Featured Research

from universities, journals, and other organizations

Sensitizing Tumor Response To Cancer Therapy

Date:
August 7, 2009
Source:
University of Arizona
Summary:
Researchers are working to find natural, biologically active compounds that will sensitize cancerous tumors to therapy without damaging normal tissue.

Two forms of skin and brain cancer respond very poorly to chemotherapy and radiation: melanoma and glioblastoma multiforme brain cancer.

Both are the focus of an intensive effort in the department of nutritional sciences at The University of Arizona to find natural, biologically active compounds that will sensitize the cancerous tumors to therapy without damaging normal tissue. By using the compounds in conjunction with conventional treatment, the researchers hope patient survival rates will ultimately increase.

The incidence of melanoma, an aggressive and often fatal form of skin cancer, is increasing at the rate of 3 percent annually, according to the American Cancer Society.

Dacarbazine, the standard chemotherapeutic drug for melanoma for decades, has been ineffective when used alone. To improve its performance, Randy Burd, assistant professor of nutritional sciences and member of the UA's BIO5 Institute, has been testing the drug and its new analog Temozolomide in combination with various bioactive compounds to gain greater response rates on melanoma tumors in cell cultures.

"After working with COX-2 inhibitors – which had complications – we started looking at quinones, which occur in nature as pigments, vitamin biochemical backbones and plant compounds, and then we analyzed the enzymes involved in their activation," Burd said.

Quercetin, a polyphenol found in apples, onions, green tea and other plant-based foods, is a quinone that has shown an interesting effect on melanoma tumors.

In low concentrations quercetin behaves as an antioxidant, yet at high concentrations it becomes a cell-damaging pro-oxidant.

Burd's group is exploiting the pro-oxidant attribute of quercetin, using tyrosinase, which is the highly expressed enzyme responsible for the pigment formation in human skin cells that grow out of control in melanoma.

"The quercetin is similar to precursors of melanin," Burd said. "The tyrosinase actually recognizes and activates quercetin to a pro-oxidant rather than an antioxidant."

When tested together in melanoma tumor cell cultures, the result is tumor cell death. The melanoma enzyme is tricked into activating so much quercetin that it turns around and sensitizes the melanoma cells to the chemotherapy drug, and they die.

Quercetin is an example of a biological response modifier, which is a drug or a compound that changes the function of tumor cells so they will be more responsive to chemotherapy or radiation, according to Burd.

Key members of his research group responsible for moving this work forward include nutritional sciences research associates Sittadjody Sivanandane and Thilakavathy Thangasamy, and graduate research associate Erin Mendoza.

The team is now screening a library of bioactive food and plant compounds to find out if they kill tumor cells for different cancers, and if they do, what genes or proteins are involved in their activity.

The research is supported through a combination of pharmaceutical sponsors, private grants and government funding.

For successful compounds like the quercetin used in the melanoma study, the researchers need to modify them into deliverable pharmaceutical drugs, making the compound more potent, and then put them into repeated clinical trials.

"We're also looking at which enzymes are expressed in different tumors so we can design a specific therapy," Burd said.

In the case of glioblastoma multiforme brain cancer, the focus is on finding and screening quinones that could be used in the brain to reverse the radiation-resistance of tumors, and then using those compounds in conjunction with radiation treatment. The approach is new, and the potential slate of possible bioactive compounds that could be used for different types of cancer is vast.

Burd is ultimately interested in developing and training students in nutrigenomics, the study of molecular relationships between nutrition and the response of people's genes for disease prevention and intervention.

A new program in nutrigenomics has been created through a partnership between investigators at the UA, researchers Adam P. Dicker and Susan Lanza-Jacoby at Thomas Jefferson University in Philadelphia and Marc S. Halfon at the University at Buffalo in New York.

Down the line, it may be possible to develop individualized diets based on someone's cancer risk.

"For example, we would want to know how products like quinones are going to interact with the genes and enzymes in your precancerous cells and cancerous cells," Burd suggested. "Then we would check which foods you should be eating with your particular gene or protein profile to inhibit or treat cancers. Nutrigenomics is limited right now, but it's an emerging field."


Story Source:

The above story is based on materials provided by University of Arizona. Note: Materials may be edited for content and length.


Cite This Page:

University of Arizona. "Sensitizing Tumor Response To Cancer Therapy." ScienceDaily. ScienceDaily, 7 August 2009. <www.sciencedaily.com/releases/2009/08/090805150528.htm>.
University of Arizona. (2009, August 7). Sensitizing Tumor Response To Cancer Therapy. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/08/090805150528.htm
University of Arizona. "Sensitizing Tumor Response To Cancer Therapy." ScienceDaily. www.sciencedaily.com/releases/2009/08/090805150528.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins