Featured Research

from universities, journals, and other organizations

Scientists Find Universal Rules For Food-web Stability

Date:
August 7, 2009
Source:
Max-Planck-Gesellschaft
Summary:
Food-web stability is enhanced when many diverse predator-prey links connect high and intermediate trophic levels. The computations also reveal that small ecosystems follow other rules than large ecosystems: differences in the strength of predator-prey links increase the stability of small webs, but destabilize larger webs.

A Juvenile African Bush Viper (Atheris chlorechis) with a small frog, at night. Researchers found that food-web stability is enhanced when many diverse predator-prey links connect high and intermediate trophic levels.
Credit: iStockphoto/Mark Kostich

New findings, published in the journal Science, conclude that food-web stability is enhanced when many diverse predator-prey links connect high and intermediate trophic levels. The computations also reveal that small ecosystems follow other rules than large ecosystems: differences in the strength of predator-prey links increase the stability of small webs, but destabilize larger webs.

Related Articles


Natural ecosystems consist of interwoven food chains, in which individual animal or plant species function as predator or prey. Potential food webs not only differ by their species composition, but also vary in their stability. Observable food webs are stable food webs, with the relationships between their species remaining constant over relatively long periods of time.

Understanding complex systems such as food webs present major challenges to science. They can either be examined by observing natural environments, or by computer simulations. To enable computer simulations of such systems, scientists often have to make simplifying assumptions, keeping the number of model parameters as low as possible. Yet, the computational demands of such simulations are high and their relevance is often limited.

Innovative methodology

Scientists from the Max Planck Institute for the Physics of Complex Systems (MPIPKS) in Dresden, Germany, have developed a new method that allows them to efficiently analyze the impact of innumerable parameters on complex systems.

"By using a method called generalized modeling, we examine whether a given food web can, in principle, be stable, i.e., whether its species can coexist in the long term," says Thilo Gross from MPIPKS. Complex ecosystems can thus be simulated and analyzed under almost any conditions. "In this way we can estimate which parameters will keep ecosystems stable and which will upset their balance."

The method can also be used for examining other complex systems, such as human metabolism or gene regulation.

Generalists stabilize, specialists destabilize

Applying this innovative modeling approach together with colleagues at the International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria, and Princeton University, USA, the scientists have succeeded in discovering not just one, but several universal rules in the dynamics of ecosystems.

"Food-web stability is enhanced when species at high trophic levels feed on multiple prey species and species at intermediate trophic levels are fed upon by multiple predator species," says Ulf Dieckmann of IIASA.

The scientists have also identified additional stabilizing and destabilizing factors within ecosystems. Ecosystems with high densities of predator-prey links are less likely to be stable, while a strong dependence of predation on predator density destabilizes the system. On the other hand, a strong dependence of predation on prey density has a stabilizing impact on food webs.

Differences between small and large systems

A further important finding is that food webs consisting of only a few species behave qualitatively different from webs consisting of many species.

"Small ecosystems apparently follow different rules than large ecosystems," says Ulf Dieckmann. "Systems with fewer species are more stable if there are strong interactions between some species, but only weak interactions between others. For food webs with many species, exactly the opposite is true. Extremely strong or weak predator-prey links in nature should therefore be the rarer the more species a food web contains," he concludes.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Scientists Find Universal Rules For Food-web Stability." ScienceDaily. ScienceDaily, 7 August 2009. <www.sciencedaily.com/releases/2009/08/090806141708.htm>.
Max-Planck-Gesellschaft. (2009, August 7). Scientists Find Universal Rules For Food-web Stability. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2009/08/090806141708.htm
Max-Planck-Gesellschaft. "Scientists Find Universal Rules For Food-web Stability." ScienceDaily. www.sciencedaily.com/releases/2009/08/090806141708.htm (accessed October 26, 2014).

Share This



More Earth & Climate News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins