Featured Research

from universities, journals, and other organizations

Scientists Find Universal Rules For Food-web Stability

Date:
August 7, 2009
Source:
Max-Planck-Gesellschaft
Summary:
Food-web stability is enhanced when many diverse predator-prey links connect high and intermediate trophic levels. The computations also reveal that small ecosystems follow other rules than large ecosystems: differences in the strength of predator-prey links increase the stability of small webs, but destabilize larger webs.

A Juvenile African Bush Viper (Atheris chlorechis) with a small frog, at night. Researchers found that food-web stability is enhanced when many diverse predator-prey links connect high and intermediate trophic levels.
Credit: iStockphoto/Mark Kostich

New findings, published in the journal Science, conclude that food-web stability is enhanced when many diverse predator-prey links connect high and intermediate trophic levels. The computations also reveal that small ecosystems follow other rules than large ecosystems: differences in the strength of predator-prey links increase the stability of small webs, but destabilize larger webs.

Natural ecosystems consist of interwoven food chains, in which individual animal or plant species function as predator or prey. Potential food webs not only differ by their species composition, but also vary in their stability. Observable food webs are stable food webs, with the relationships between their species remaining constant over relatively long periods of time.

Understanding complex systems such as food webs present major challenges to science. They can either be examined by observing natural environments, or by computer simulations. To enable computer simulations of such systems, scientists often have to make simplifying assumptions, keeping the number of model parameters as low as possible. Yet, the computational demands of such simulations are high and their relevance is often limited.

 

Innovative methodology

 

Scientists from the Max Planck Institute for the Physics of Complex Systems (MPIPKS) in Dresden, Germany, have developed a new method that allows them to efficiently analyze the impact of innumerable parameters on complex systems.

"By using a method called generalized modeling, we examine whether a given food web can, in principle, be stable, i.e., whether its species can coexist in the long term," says Thilo Gross from MPIPKS. Complex ecosystems can thus be simulated and analyzed under almost any conditions. "In this way we can estimate which parameters will keep ecosystems stable and which will upset their balance."

The method can also be used for examining other complex systems, such as human metabolism or gene regulation.

 

Generalists stabilize, specialists destabilize

 

Applying this innovative modeling approach together with colleagues at the International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria, and Princeton University, USA, the scientists have succeeded in discovering not just one, but several universal rules in the dynamics of ecosystems.

"Food-web stability is enhanced when species at high trophic levels feed on multiple prey species and species at intermediate trophic levels are fed upon by multiple predator species," says Ulf Dieckmann of IIASA.

The scientists have also identified additional stabilizing and destabilizing factors within ecosystems. Ecosystems with high densities of predator-prey links are less likely to be stable, while a strong dependence of predation on predator density destabilizes the system. On the other hand, a strong dependence of predation on prey density has a stabilizing impact on food webs.

 

Differences between small and large systems

 

A further important finding is that food webs consisting of only a few species behave qualitatively different from webs consisting of many species.

"Small ecosystems apparently follow different rules than large ecosystems," says Ulf Dieckmann. "Systems with fewer species are more stable if there are strong interactions between some species, but only weak interactions between others. For food webs with many species, exactly the opposite is true. Extremely strong or weak predator-prey links in nature should therefore be the rarer the more species a food web contains," he concludes.

 


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Scientists Find Universal Rules For Food-web Stability." ScienceDaily. ScienceDaily, 7 August 2009. <www.sciencedaily.com/releases/2009/08/090806141708.htm>.
Max-Planck-Gesellschaft. (2009, August 7). Scientists Find Universal Rules For Food-web Stability. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2009/08/090806141708.htm
Max-Planck-Gesellschaft. "Scientists Find Universal Rules For Food-web Stability." ScienceDaily. www.sciencedaily.com/releases/2009/08/090806141708.htm (accessed April 24, 2014).

Share This



More Earth & Climate News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
California Drought Is Good News for Gold Prospectors

California Drought Is Good News for Gold Prospectors

AFP (Apr. 22, 2014) — For months California has suffered from a historic drought. The lack of water is worrying for farmers and ranchers, but for gold diggers it’s a stroke of good fortune. With water levels low, normally inaccessible areas are exposed. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com
Raw: MN Lakes Still Frozen Before Fishing Opener

Raw: MN Lakes Still Frozen Before Fishing Opener

AP (Apr. 22, 2014) — With only three weeks until Minnesota's fishing opener, many are wondering if the ice will be gone. Some of the Northland lakes are still covered by up to three feet of ice, causing concern that just like last year, the lakes won't be ready. (April 22) Video provided by AP
Powered by NewsLook.com
Scientists Warn Of Likely El Niño Event This Year

Scientists Warn Of Likely El Niño Event This Year

Newsy (Apr. 22, 2014) — With Pacific ocean water already showing signs of warming, the NOAA says there's about a 66 percent chance the event will begin before November. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins