Featured Research

from universities, journals, and other organizations

Marine Microbes Creating Green Waves In Industry

Date:
August 8, 2009
Source:
Biotechnology and Biological Sciences Research Council (BBSRC)
Summary:
New technology designed to analyze large numbers of novel marine microbes could lead to more efficient and greener ways to manufacture new drugs for conditions such as epilepsy, diabetes, flu and other viruses, as well as improving the manufacture of other products such as agrochemicals.

New technology designed to analyse large numbers of novel marine microbes could lead to more efficient and greener ways to manufacture new drugs for conditions such as epilepsy, diabetes, flu and other viruses, as well as improving the manufacture of other products such as agrochemicals.

Related Articles


Researchers at Heriot-Watt University and Plymouth Marine Laboratory (PML) in collaboration with Edinburgh based company Ingenza Ltd are searching for new enzymes for use as manufacturing tools in the pharmaceutical and agrochemical industries. The research project, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Technology Strategy Board (TSB), uses biochemical techniques to identify potentially useful enzymes in microbes that are found in the sea.

This work brings important expertise from industry together with academic researchers. The value in this approach is to take specific knowledge and expertise in biochemistry and molecular biology, coupled with novel and diverse marine microbes, right through to high-yielding, scalable and economic manufacturing processes. These processes use enzyme catalysts from the marine microbes, which lead to greener and cleaner manufacturing methods.

Dr Robert Speight, from Ingenza Ltd, explained: "We are using biology in our chemical processes to come up with improved manufacturing routes. We are taking advantage of the natural diversity of marine organisms that has arisen through evolution in different environments and coupling that with high-tech screening systems. We are looking to find naturally occurring microbes that already have a built-in capacity to do the chemical reactions we want to perform in industry. There is every possibility of developing more efficient and sustainable manufacturing solutions - for pharmaceuticals and agrochemicals in particular - as a result of this search."

Microorganisms account for more than 95 per cent of ocean biomass but relatively little is really known about them and their potential applications. The research team's search is for industrially relevant enzymes which will reduce waste and increase productivity in the manufacture of drugs and agrochemicals. The enzymes they seek have the ability to convert compounds that would have previously been waste products in the manufacturing process, into the desired product, therefore increasing the efficiency of the process.

Professor Mark Keane, from Heriot-Watt University, said: "Our approach is to look for microbes which can promote the chemical reactions that we want to use in manufacturing. We then treat the microbes under conditions where they produce the key enzymes in higher yield, which we finally purify. The enzymes then undergo systematic testing to evaluate their activity, which enables us to pinpoint candidates that exhibit the best performance."

We are now identifying microbes with a type of enzyme called an amine oxidase. This could be key to cheaper, more efficient and sustainable process in the synthesis of valuable chemicals by both the pharmaceutical and agrochemical industries."

Commenting on the findings, BBSRC Chief Executive Professor Doug Kell, said: "Green and White biotechnologies are going to be an increasingly important part of the manufacturing landscape. Looking to biological systems that have been finely tuned by evolution to solve problems, rather than starting from scratch every time, might seem an obvious thing to do. It does however, in many cases, require the bringing together of particular niche expertise. The value of this collaboration is in the coincidence of knowledge and expertise from academia with the uniquely important business of synthesising a product on a large scale.

"What the outcomes of this project will offer us is the chance to have a significant impact on the sustainability of pharmaceutical and biochemicals production as we move from oil-based to photosynthesis-derived chemistry."


Story Source:

The above story is based on materials provided by Biotechnology and Biological Sciences Research Council (BBSRC). Note: Materials may be edited for content and length.


Cite This Page:

Biotechnology and Biological Sciences Research Council (BBSRC). "Marine Microbes Creating Green Waves In Industry." ScienceDaily. ScienceDaily, 8 August 2009. <www.sciencedaily.com/releases/2009/08/090807091210.htm>.
Biotechnology and Biological Sciences Research Council (BBSRC). (2009, August 8). Marine Microbes Creating Green Waves In Industry. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2009/08/090807091210.htm
Biotechnology and Biological Sciences Research Council (BBSRC). "Marine Microbes Creating Green Waves In Industry." ScienceDaily. www.sciencedaily.com/releases/2009/08/090807091210.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins