Featured Research

from universities, journals, and other organizations

'Chemical Genetics' Approach Used To Regulate The Activity Of Plant Hormones

Date:
August 13, 2009
Source:
University of Vienna
Summary:
A plant researcher in Austria is working on signal transduction of hormones called strigolactones. Within his search for chemical substances to influence the activity of this pathway, he is establishing a high-throughput approach to test thousands of different chemical compounds.

Plant researcher Tobias Sieberer of the Max F. Perutz Laboratories of the University of Vienna works on signal transduction of hormones called strigolactones. Within his search for chemical substances to influence the activity of this pathway, he is establishing a high-throughput approach to test thousands of different chemical compounds. The project is funded by the Vienna Science and Technology Fund (WWTF).

Related Articles


Strigolactones are plant hormones, which were first discovered in crop plants during the infection with the parasitic plant Striga. Only plants which produce strigolactones were infected with the parasite resulting in a significant reduction of vigour. Moreover, this signalling pathway plays also an important role in plants to initiate symbiotic interactions with mycorrhiza fungi to enhance the absorption of nutrients from the soil.

The third hormonal effect known so far is an influence on shoot branching. If strigolactones are inactivated in experiments, the number of branches is increased. A means to manipulate these three known hormonal effects would have a strong potential for agricultural applications. Particularly in countries with food shortage parasite infection might be diminished. Moreover the rate of shoot branching is an important breeding trait, which affects the quantity and quality of crop harvest as well as the technical effort in cultivation techniques.

Searching for a substance with specific effect

"We want to find substances, which block or stimulate strigolactone effects to use it for different purposes", Tobias Sieberer describes the interdisciplinary project funded by the WWTF.

Sieberer and his project partners Gang Dong of the Max F. Perutz Laboratories and Gerhard Ecker of the Department for Medical Chemistry of the University of Vienna selected an innovative approach as yet not well established in academic research in Austria: Virtual and real high-throughput screening of a vast number of known small molecules. Gang Dong is a structural biologist and will reveal the 3D structure of known enzymes of the strigolatone biosynthesis pathway. The protein structures will then be compared to 3D structures of known small molecules in Gerhard Ecker’s virtual database. With this narrowed selection of inhibitor candidates functional experiments are carried out in the model plant Arabidopsis thaliana.

A second more unbiased approach is searching for substances with the direct help of the Arabidopsis plant. “The project allows the purchase of a highly diverse compound library containing over 30.000 molecule classes. We will grow the plants on one of the chemicals each under controlled laboratory conditions", explains the plant researcher. The lab strain of Arabidopsis comprises a reporter gene, which is turned on if the applied substance alters strigolactone levels – the plant starts to fluoresce.

Bacterium helps plant researchers

Also the bacterium Escherichia coli is utilized for the search of strigolactone regulators. An engineered laboratory strain produces beta-carotene, the dye also found in carrots, and thus colonies have an orange colour. With the help of molecular biological methods the researchers bring the proteins for strigolactone biosynthesis into the bacteria. If the proteins are active, the beta-carotene is recognized as substrate and will be degraded resulting in colourless bacterial colonies. Again the researchers then test for different chemical substances. Inhibitor molecules can easily be detected by the orange-coloured colonies as the degradation of beta-carotene is blocked and the dye will accumulate.

Interdisciplinary project important for basic and applied research

The project allows the establishment of the first academic compound screening facility in Austria. In pharmaceutical companies such libraries are routinely used for drug discovery. For scientists from public research institutes the use of such libraries is cost-intensive and results are subjected to complicate patent laws. "Our library will be open for collaboration with interested scientists from the Viennese area", Sieberer illustrates the possibility to use this library for research on additional model organisms. Results of this chemical genetics technique will support basic and applied research. For the strigolactone project this means that discovered inhibitors might be used to enlighten the basic mechanisms of biosynthesis and signalling of the hormone. But also in applied research this might lead to the development of directed shoot branching regulation or impact on the infection rate of plant parasites.


Story Source:

The above story is based on materials provided by University of Vienna. Note: Materials may be edited for content and length.


Cite This Page:

University of Vienna. "'Chemical Genetics' Approach Used To Regulate The Activity Of Plant Hormones." ScienceDaily. ScienceDaily, 13 August 2009. <www.sciencedaily.com/releases/2009/08/090810044822.htm>.
University of Vienna. (2009, August 13). 'Chemical Genetics' Approach Used To Regulate The Activity Of Plant Hormones. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2009/08/090810044822.htm
University of Vienna. "'Chemical Genetics' Approach Used To Regulate The Activity Of Plant Hormones." ScienceDaily. www.sciencedaily.com/releases/2009/08/090810044822.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Amazon Keeps Its Green Thanks To The Sahara Desert

The Amazon Keeps Its Green Thanks To The Sahara Desert

Newsy (Feb. 25, 2015) Satellite data shows the Amazon rainforest supports its lush flora with a little help from Sahara Desert dust. Video provided by Newsy
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Marijuana Nowhere Near As Deadly As Alcohol: Study

Marijuana Nowhere Near As Deadly As Alcohol: Study

Newsy (Feb. 25, 2015) A new study says marijuana is about 114 times less deadly than alcohol. Video provided by Newsy
Powered by NewsLook.com
Fox With Horrifying Injury Rescued and Released Back Into the Wild

Fox With Horrifying Injury Rescued and Released Back Into the Wild

RightThisMinute (Feb. 25, 2015) This wounded fox knew what she was doing when she wandered into the yard of a nature photographer. The photographer got "Scamp" immediately in the hands of Wildlife Aid and she was released back into the wild in no time. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins