Featured Research

from universities, journals, and other organizations

To Contract Or Not To Contract: Decision Controlled By 2 MicroRNAs

Date:
September 10, 2009
Source:
Journal of Clinical Investigation
Summary:
New research has provided insight into the molecular regulators of the function of muscle cells in the walls of blood vessels, i.e., vascular smooth muscle cells. Specifically, the acquisition and/or maintenance of the ability of VSMCs to contract and relax, thereby modulating blood pressure and distributing blood to the areas of the body that need it most, was found to be controlled in mice by two small RNA molecules known miR-143 and miR-145.

New research has provided insight into the molecular regulators of the function of muscle cells in the walls of blood vessels, i.e., vascular smooth muscle cells. Specifically, the acquisition and/or maintenance of the ability of VSMCs to contract and relax, thereby modulating blood pressure and distributing blood to the areas of the body that need it most, was found to be controlled in mice by two small RNA molecules known miR-143 and miR-145.

The walls of blood vessels contain muscle cells known as vascular smooth muscle cells (VSMCs). These cells contract and relax to modulate blood pressure and distribute blood to the areas of the body that need it most. However, some environmental signals, many of which are associated with human disease, cause VSMCs to switch from being contractile in nature to being dividing cells that produce large amounts of the proteins that form tissue matrix.

Despite the fact that this switch has been associated with a number of human blood vessel diseases, the mechanisms that control it have not been well defined. However, a team of researchers at the Max-Planck-Institut für Herz- und Lungenforschung, Germany, has now identified two small RNA molecules (microRNAs) known miR-143 and miR-145 that regulate acquisition and/or maintenance of the contractile nature of VSMCs in mice.

The team, led by Thomas Braun and Thomas Boettger, generated mice lacking both miR-143 and miR-145 and found that they had dramatically reduced numbers of contractile VSMCs and increased numbers of tissue matrix–producing VSMCs in their large arterial blood vessels. Further analysis revealed that these two small RNA molecules were required for normal contractility of arteries in vitro and maintenance of normal blood pressure in vivo. As their absence led to signs of blood vessel disease in mice, the authors suggest that miR-143/145 might provide new therapeutic targets to enhance blood vessel repair and attenuate blood vessel disease.

In an accompanying commentary, Michael Parmacek, at the University of Pennsylvania School of Medicine, Philadelphia, discusses the importance of this study and highlights the fact that miR-143 and miR-145 were found to alter the expression of differing sets of genes, meaning that future studies will need to determine precisely how they alter control of blood pressure and disease development.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal Reference:

  1. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. Journal of Clinical Investigation, August 17, 2009

Cite This Page:

Journal of Clinical Investigation. "To Contract Or Not To Contract: Decision Controlled By 2 MicroRNAs." ScienceDaily. ScienceDaily, 10 September 2009. <www.sciencedaily.com/releases/2009/08/090817184447.htm>.
Journal of Clinical Investigation. (2009, September 10). To Contract Or Not To Contract: Decision Controlled By 2 MicroRNAs. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/08/090817184447.htm
Journal of Clinical Investigation. "To Contract Or Not To Contract: Decision Controlled By 2 MicroRNAs." ScienceDaily. www.sciencedaily.com/releases/2009/08/090817184447.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) — The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) — Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) — Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins