Featured Research

from universities, journals, and other organizations

To Contract Or Not To Contract: Decision Controlled By 2 MicroRNAs

Date:
September 10, 2009
Source:
Journal of Clinical Investigation
Summary:
New research has provided insight into the molecular regulators of the function of muscle cells in the walls of blood vessels, i.e., vascular smooth muscle cells. Specifically, the acquisition and/or maintenance of the ability of VSMCs to contract and relax, thereby modulating blood pressure and distributing blood to the areas of the body that need it most, was found to be controlled in mice by two small RNA molecules known miR-143 and miR-145.

New research has provided insight into the molecular regulators of the function of muscle cells in the walls of blood vessels, i.e., vascular smooth muscle cells. Specifically, the acquisition and/or maintenance of the ability of VSMCs to contract and relax, thereby modulating blood pressure and distributing blood to the areas of the body that need it most, was found to be controlled in mice by two small RNA molecules known miR-143 and miR-145.

The walls of blood vessels contain muscle cells known as vascular smooth muscle cells (VSMCs). These cells contract and relax to modulate blood pressure and distribute blood to the areas of the body that need it most. However, some environmental signals, many of which are associated with human disease, cause VSMCs to switch from being contractile in nature to being dividing cells that produce large amounts of the proteins that form tissue matrix.

Despite the fact that this switch has been associated with a number of human blood vessel diseases, the mechanisms that control it have not been well defined. However, a team of researchers at the Max-Planck-Institut für Herz- und Lungenforschung, Germany, has now identified two small RNA molecules (microRNAs) known miR-143 and miR-145 that regulate acquisition and/or maintenance of the contractile nature of VSMCs in mice.

The team, led by Thomas Braun and Thomas Boettger, generated mice lacking both miR-143 and miR-145 and found that they had dramatically reduced numbers of contractile VSMCs and increased numbers of tissue matrix–producing VSMCs in their large arterial blood vessels. Further analysis revealed that these two small RNA molecules were required for normal contractility of arteries in vitro and maintenance of normal blood pressure in vivo. As their absence led to signs of blood vessel disease in mice, the authors suggest that miR-143/145 might provide new therapeutic targets to enhance blood vessel repair and attenuate blood vessel disease.

In an accompanying commentary, Michael Parmacek, at the University of Pennsylvania School of Medicine, Philadelphia, discusses the importance of this study and highlights the fact that miR-143 and miR-145 were found to alter the expression of differing sets of genes, meaning that future studies will need to determine precisely how they alter control of blood pressure and disease development.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal Reference:

  1. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. Journal of Clinical Investigation, August 17, 2009

Cite This Page:

Journal of Clinical Investigation. "To Contract Or Not To Contract: Decision Controlled By 2 MicroRNAs." ScienceDaily. ScienceDaily, 10 September 2009. <www.sciencedaily.com/releases/2009/08/090817184447.htm>.
Journal of Clinical Investigation. (2009, September 10). To Contract Or Not To Contract: Decision Controlled By 2 MicroRNAs. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/08/090817184447.htm
Journal of Clinical Investigation. "To Contract Or Not To Contract: Decision Controlled By 2 MicroRNAs." ScienceDaily. www.sciencedaily.com/releases/2009/08/090817184447.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins