Featured Research

from universities, journals, and other organizations

Getting Wired: How The Brain Does It

Date:
August 27, 2009
Source:
McGill University
Summary:
Scientists have found an important mechanism involved in setting up the vast communications network of connections in the brain.

In a new study, researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University have found an important mechanism involved in setting up the vast communications network of connections in the brain.

Related Articles


A signaling pathway involving interactions between a schizophrenia-linked gene product, Calcineurin, and a transcription factor known as Nuclear Factor in Activated T-cells (NFAT) contributes to the connectivity at nerve cell (neuron) junctions or synapses and affects the extent of nerve cell projections or dendritic branches, in the visual system. The results of this study, published in the journal Neuron, may bring hope to adults suffering from brain injuries and offer the possibility of early diagnosis, treatments and therapies for schizophrenia, autism or other developmental disorders where abnormal neurological wiring is thought to occur early in life.

In early brain development, there is an overabundance of unspecified connections between neurons. During development (and learning), these connections are pruned, leaving the stronger and more specific ones. This refinement occurs in response to a set of inputs from the environment, and is traditionally thought to be mediated through changes at synapses - the specialized junctions through which neurons communicate with each other.

Neurons possess an innate tendency to extend branched projections from the cell body known as dendrites. Dendrites receive information and form synaptic contacts with the terminals of other nerve cells to allow nerve impulses to be transmitted. In the so-called “synaptotropic model” of dendritic development, interactions between dendrites and potential synaptic partners provide the extrinsic cues that help direct dendritic growth into patterns that optimize synaptic interactions. Therefore, growth or branching is most likely to occur in regions where there is a stabilized synapse and retraction is more likely in regions where synapses fail to mature or become destabilized.

“Our study shows that changes in synaptic connections are also controlled by alterations in the transcriptional profile of the cell which governs protein production,” says Dr. Edward Ruthazer, neuroscientist at The Neuro and lead investigator of the study. There is a growing body of evidence that transcriptional regulation, an important step in the process of making proteins, is a key regulator of long-term changes in synaptic connectivity.

The protein Calcineurin (CaN) regulates transcriptional programs that control synapse formation and function. It has also has been strongly implicated in weakening connections between cells, and is a likely regulator of pruning of connectivity. CaN instructs the neurons through the transcription factor NFAT, which in turn plays an important role in axonal outgrowth and neuronal response to extrinsic cues involved in circuit development and refinement.

Neil Schwartz, a graduate student in Dr. Ruthazer’s lab designed a method of specifically blocking the interaction between CaN and NFAT at the nucleus in order to examine the effects on neuronal connections in the visual system. “We found that inhibiting the function of CaN resulted in more dendritic branches and more synapses, demonstrating that CaN is a potent regulator of dendritic complexity and synaptic function,” explained Dr. Ruthazer. “We further demonstrated that CaN mediates its effects on neurocircuitry through its activation of NFAT transcription factors and that NFAT activity in the developing brain can be regulated by natural visual stimulation.

This extension of the synaptotrophic model taking into consideration not only the interactions with synaptic partners that shape the neural architecture, but also the transcriptional profile of nerve cells, provides vital insight into diseases in which there is abnormal neural connectivity and offers the possibility of early diagnosis and treatment.


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Cite This Page:

McGill University. "Getting Wired: How The Brain Does It." ScienceDaily. ScienceDaily, 27 August 2009. <www.sciencedaily.com/releases/2009/08/090826113821.htm>.
McGill University. (2009, August 27). Getting Wired: How The Brain Does It. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2009/08/090826113821.htm
McGill University. "Getting Wired: How The Brain Does It." ScienceDaily. www.sciencedaily.com/releases/2009/08/090826113821.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins