Featured Research

from universities, journals, and other organizations

Tropical Storms Endure Over Wet Land, Fizzle Over Dry

Date:
August 27, 2009
Source:
Purdue University
Summary:
If it has already rained, it's going to continue to pour, according to a study of how ocean-origin storms behave when they come ashore. More than 30 years of monsoon data from India showed that ground moisture where the storms make landfall is a major indicator of what the storm will do from there. If the ground is wet, the storm is likely to sustain, while dry conditions should calm the storm.

If it has already rained, it's going to continue to pour, according to a Purdue University study of how ocean-origin storms behave when they come ashore.

More than 30 years of monsoon data from India showed that ground moisture where the storms make landfall is a major indicator of what the storm will do from there. If the ground is wet, the storm is likely to sustain, while dry conditions should calm the storm.

"Once a storm comes overland, it was unclear whether it would stall, accelerate or fizzle out," said Dev Niyogi, Indiana state climatologist and associate professor of agronomy and earth and atmospheric sciences. "We found that whether a storm becomes more intense or causes heavy rains could depend on the land conditions - something we'd not considered. Thus far we've looked at these storms based mainly on ocean conditions or upper atmosphere."

Niyogi said tropical storms gain their strength from warm ocean water evaporation.

"The same phenomenon - the evaporation from the ocean that sustains the storms - could be the same phenomenon that sustains that storm over land with moisture in the soil," he said. "The storm will have more moisture and energy available over wet soil than dry."

Niyogi's team's findings were published in the August edition of the journal Geophysical Research Letters.

Storm data fed into a model showed that higher levels of ground moisture would sustain Indian monsoon depressions. The model's prediction was proven when compared to ground conditions for 125 Indian monsoons over 33 years, where storms sustained when the ground was wet at landfall.

Knowing the sustainability of a storm could lead to better predictions on flooding and damage inland before a monsoon or a hurricane makes landfall.

"We think the physics is such that we could see similar results more broadly, such as in the United States," Niyogi said.

The National Science Foundation and NASA funded the research. The Purdue led-team also consisted of researchers from the National Center for Atmospheric Research, NASA-GSFC/ESSIC, the University of Georgia, the Indian Space Research Organization and the Indian Institute of Technology Delhi.

Niyogi said the next step is to use the model and ground moisture data to test these theories for hurricanes in the United States.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chang et al. Possible relation between land surface feedback and the post-landfall structure of monsoon depressions. Geophysical Research Letters, 2009; 36 (15): L15826 DOI: 10.1029/2009GL037781

Cite This Page:

Purdue University. "Tropical Storms Endure Over Wet Land, Fizzle Over Dry." ScienceDaily. ScienceDaily, 27 August 2009. <www.sciencedaily.com/releases/2009/08/090826152721.htm>.
Purdue University. (2009, August 27). Tropical Storms Endure Over Wet Land, Fizzle Over Dry. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/08/090826152721.htm
Purdue University. "Tropical Storms Endure Over Wet Land, Fizzle Over Dry." ScienceDaily. www.sciencedaily.com/releases/2009/08/090826152721.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins