Featured Research

from universities, journals, and other organizations

Promising New Target Emerges For Autoimmune Diseases

Date:
September 7, 2009
Source:
University of Michigan Health System
Summary:
Scientists have uncovered an important way that aggressive immune cells normally are held in check so they don't attack the body's own cells. The findings open a new avenue of research for future therapies for autoimmune diseases, organ transplants and cancer. Regulatory T cells influence aggressive immune cells by regulating the chemical environment between cells, the scientists report in Nature Chemical Biology.

Changing the chemistry between T regulatory cells and other immune cells could result in future therapies for autoimmune diseases.
Credit: Image courtesy of University of Michigan Health System

University of Michigan scientists say they have uncovered a fundamentally new mechanism that holds in check aggressive immune cells that can attack the body’s own cells. The findings open a new avenue of research for future therapies for conditions ranging from autoimmune diseases to organ transplants to cancer.

The scientists discovered that the immune system’s regulatory T cells, a topic of intense medical research, influence aggressive immune cells by regulating the chemical environment between cells. The results appear online ahead of print in Nature Chemical Biology.

“Now we know that the redox environment outside the cell is a very important dynamic. It regulates cell function,” says U-M biochemistry professor Ruma Banerjee, the study’s senior author and the Vincent Massey Collegiate Professor of Biological Chemistry and associate chair of biological chemistry at the U-M Medical School. Processes known as redox chemistry are fundamental to the way cells derive and consume energy.

Regulatory T cells appear to alter the chemical environment around their aggressive cousins, known as autoreactive T cells, in ways that either suppress them or cause them to proliferate, the study found. It is likely that this mechanism is involved in inflammatory bowel disease (IBD) and ulcerative colitis, Banerjee says.

After examining the process further, Banerjee’s team would like to apply the insights in animal studies. The study results have implications for scientists looking for ways to enlist regulatory T cells to rein in misguided autoreactive T cells, and for other research areas as well. Regulatory T cells also influence the immune response in cancer, pregnancy, organ transplants and infection.

Context

Certain T cells in the immune system which normally attack invaders of the body can cause autoimmune diseases when they react instead against the body’s own cells. These auto reactive T cells are thought to cause multiple sclerosis, Crohn’s disease, rheumatoid arthritis, lupus and other diseases.

In these diseases, researchers want T regulatory cells to restrain excessive action by autoreactive T cells. But to control cancer, researchers would like to partially inhibit T regulatory cells, so that autoreactive T cells will be able to identify and vigorously attack cancer cells.

The U-M scientists found that redox chemistry, an emerging area of interest among scientists, plays a significant role in the way immune cells regulate each other. Redox chemistry plays a role in many diseases. Banerjee believes that the study’s findings should heighten the chances of success in regulating T regulatory cells to curb disease.

“Redox chemistry is a mechanism that is fundamentally important in understanding T regulatory cell actions,” says Zhonghua Yan, the graduate student who is first author of the study.

Research details

By studying live mouse immune cells cultured in lab dishes, the team found that important redox communication occurs between dendritic cells, which are the first immune cells to detect a foreign agent, and autoreactive T cells. The dendritic cells alter the chemical environment outside cells in a way that promotes activation of the T cells. But then T regulatory cells “intervene in the redox chatter” and suppress that effect, says co-author Sanjay Garg, Ph.D., a research investigator in the U-M Department of Biological Chemistry.

What’s next

Banerjee says her team needs to do more work to fully understand the process before they can use their insights to block or encourage T regulatory cell activity in animal studies of IBD or another autoimmune disease.

“We are keen to move this into a disease model,” she says, a step made easier because the pathway by which T regulatory cells appear to affect the redox chemistry outside cells is a well known one.


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan Health System. "Promising New Target Emerges For Autoimmune Diseases." ScienceDaily. ScienceDaily, 7 September 2009. <www.sciencedaily.com/releases/2009/09/090901122641.htm>.
University of Michigan Health System. (2009, September 7). Promising New Target Emerges For Autoimmune Diseases. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/09/090901122641.htm
University of Michigan Health System. "Promising New Target Emerges For Autoimmune Diseases." ScienceDaily. www.sciencedaily.com/releases/2009/09/090901122641.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins