Featured Research

from universities, journals, and other organizations

Single Missing Protein May Result In Down Syndrome And Other Human Chromosomal Birth Defects

Date:
September 17, 2009
Source:
Florida State University
Summary:
Using yeast genetics and a novel scheme to selectively remove a single protein from the cell division process called meiosis, a cell biologist found that when a key molecular player known as Pds5 goes missing, chromosomes fail to segregate and pair up properly, and birth defects such as Down syndrome can result.

Looking at the yeast genome: this is the genetic material of this organism.
Credit: Hong-Guo Yu/FSU Dept. of Biological Science

Using yeast genetics and a novel scheme to selectively remove a single protein from the cell division process called meiosis, a cell biologist at The Florida State University found that when a key molecular player known as Pds5 goes missing, chromosomes fail to segregate and pair up properly, and birth defects such as Down syndrome can result.

That discovery is groundbreaking, but so, too, is what principal investigator Hong-Guo Yu calls the "genetics trick" performed by his research team that made the discovery possible. The study shines new light on the protein Pds5, its crucial regulatory role during meiosis, and the impact of its absence on the molecular-level genesis of human chromosomal birth defects that include Down, Edwards, Patau, Turner, Klinefelter's and XYY syndromes.

The findings, which are described in a paper featured in the Journal of Cell Biology, may contribute to the eventual development of targeted, molecular-level interventions.

Yu, an assistant professor in FSU's Department of Biological Science, explained how the meiotic stage is set and what goes wrong when key elements are rearranged.

"To produce a genetically balanced gamete (sperm and egg), the cell must contend with two sets of chromosome pairs, homologs and sisters," he said. "Homologs are the nearly identical chromosomes inherited from each parent; sisters are exactly identical pairs that are produced like photocopies as part of normal cell division.

"During normal meiosis, the process of division that halves the number of chromosomes per cell, my colleagues and I discovered that Pds5 regulates the pairing and synapsis (joining together) of 'mom and dad' homologs. We also learned that Pds5 plays a vital role in the synaptonemal complex, a glue-like protein structure that homologs use to literally stick together as they pair up. In addition, we found that, although sister chromatids enter meiosis in very close proximity to one another, Pds5 acts to inhibit synapsis between them, a good thing because, then, meiotic conditions support the necessary pairing of homologs."

Consequently, removing Pds5 during meiosis triggers a chromosomal catastrophe.

"In order to observe what happened when the Pds5 went missing from the process, we performed a 'molecular genetics trick' that had never been applied to this particular protein before, and it worked," Yu said. "We successfully engineered yeast cells that shut down Pds5 only during meiosis, but not when they were vegetative."

As a result, Pds5 was no longer present to regulate homolog organization and transmission in the meiotic yeast cells. The synaptonemal complex, which normally would support the synapsis of homologs by creating a sticky bond along their entire length, failed to form. In the meiotic malfunction that followed, the identical sister chromosomes began to synapse instead.

"When Pds5 is removed and sister chromatids become synapsed as a result, the segregation and recombination of homologs essential for genetic diversity fails," Yu said. "This finding is highly important, because failure to generate a crossover between homologs leads to chromosome missegregation and can cause human chromosomal birth defects such as Down syndrome, which affects about one in 800 newborns in the United States."

Yu said the landmark study has significantly extended previous observations of the role of Pds5 in the formation of meiotic chromosome structure.

"Now, we are investigating the other factors that interact with Pds5 during meiosis to regulate chromosome segregation and homolog synapsis," he said. "Long term, we hope to achieve a comprehensive understanding of the molecular mechanisms behind chromosomal birth defects and see our research contribute to the creation of targeted interventions during meiosis."

Currently, Yu's research at Florida State University is supported by a two-year, $150,000 Basil O'Connor Starter Scholar award from the March of Dimes Foundation, and by a three-year, $375,000 Bankhead Coley grant from the Florida Biomedical Research Program.


Story Source:

The above story is based on materials provided by Florida State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jin et al. Pds5 is required for homologue pairing and inhibits synapsis of sister chromatids during yeast meiosis. The Journal of Cell Biology, 2009; 186 (5): 713 DOI: 10.1083/jcb.200810107

Cite This Page:

Florida State University. "Single Missing Protein May Result In Down Syndrome And Other Human Chromosomal Birth Defects." ScienceDaily. ScienceDaily, 17 September 2009. <www.sciencedaily.com/releases/2009/09/090916153147.htm>.
Florida State University. (2009, September 17). Single Missing Protein May Result In Down Syndrome And Other Human Chromosomal Birth Defects. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2009/09/090916153147.htm
Florida State University. "Single Missing Protein May Result In Down Syndrome And Other Human Chromosomal Birth Defects." ScienceDaily. www.sciencedaily.com/releases/2009/09/090916153147.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Positive Ebola News: Outbreak 'Contained' In Nigeria

Some Positive Ebola News: Outbreak 'Contained' In Nigeria

Newsy (Sep. 30, 2014) The CDC says a new case of Ebola has not been reported in Nigeria for more than 21 days, leading to hopes the outbreak might be nearing its end. Video provided by Newsy
Powered by NewsLook.com
UN Ebola Mission Head: Immediate Action Is Crucial

UN Ebola Mission Head: Immediate Action Is Crucial

AFP (Sep. 30, 2014) The newly appointed head of the United Nations Mission for Ebola Emergency Response (UNMEER), Anthony Banbury, outlines operations to tackle the virus. Duration: 00:39 Video provided by AFP
Powered by NewsLook.com
CDC Confirms First Case of Ebola in US

CDC Confirms First Case of Ebola in US

AP (Sep. 30, 2014) The CDC has confirmed the first diagnosed case of Ebola in the United States. The patient is being treated at a Dallas hospital after traveling earlier this month from Liberia. (Sept. 30) Video provided by AP
Powered by NewsLook.com
New Breast Cancer Drug Extends Lives In Clinical Trial

New Breast Cancer Drug Extends Lives In Clinical Trial

Newsy (Sep. 30, 2014) In a clinical trial, breast cancer patients lived an average of 15 months longer when they received new drug Perjeta along with Herceptin. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins