Featured Research

from universities, journals, and other organizations

First Bose-Einstein Condensate With Calcium Atoms Produced

Date:
September 24, 2009
Source:
Physikalisch-Technische Bundesanstalt (PTB)
Summary:
Physicists in Germany have succeeded for the first time worldwide in producing a Bose-Einstein condensate from the alkaline earth element calcium. The use of alkaline earth atoms creates new potential for precision measurements -- for example, for the determination of gravitational fields.

Like a giant wave in the midst of a sea of gaseous calcium atoms, the Bose-Einstein condensate soars. It is composed of approx. 20 000 atoms which are normally not visible to the human eye. However the waves which describe the atoms quantum mechanically, all oscillate synchronously in the condensate and accumulate to form a dense giant wave. In this way, the microscopic pile-up of atoms suddenly becomes macroscopic and therefore visible.
Credit: Image courtesy of Physikalisch-Technische Bundesanstalt (PTB)

The physicist and Nobel Prize winner Wolfgang Ketterle once described it as an "identity crisis" of atoms: If atoms are caught in a trap and cooled to a temperature close to the absolute zero point, they condense – similar to vapour condensing to water – and take on an all new condition: They become indistinguishable. This collective condition is called – named for its intellectual fathers – Bose-Einstein condensate.

Physicists at the Physikalisch-Technische Bundesanstalt (PTB) have now succeeded for the first time worldwide in producing a Bose-Einstein condensate from the alkaline earth element calcium. The use of alkaline earth atoms creates new potential for precision measurements -- for example, for the determination of gravitational fields. Because as opposed to previous Bose-Einstein condensates from alkali atoms, alkaline earth metals react one million times more responsively to the wavelength at optical excitations – a fact which can be used for super exact measurements. Theresults have now been published in Physical Review Letters.

Quantum mechanical background

Atoms in gases at room temperature behave like a wild bunch: They fly pell-mell at different speeds, collide with one another, and are then hurled again in another direction. However at extremely low temperatures close to the absolute zero point at zero Kelvin (–273.15 degrees Celsius) they nearly come to a standstill. At this point, the laws of quantum mechanics come into effect; these cannot be observed in everyday life and have an unsettling effect on many a non-physicist. The idea of atoms as small spheres does not work any longer. In fact, atoms can now only be described quantum mechanically by waves. Like water waves they can overlap each other. In the case of a Bose-Einstein condensate, the wave functions of up to one million atoms are so synchronised that they pile up to form a giant wave. These formations can grow to one millimeter in size and they can then be photographed. The microcosm presents itself macroscopically – it becomes visible for the observer. In the past few years, such Bose-Einstein condensates have been used for diverse investigations on the fundamentals of quantum mechanics, as a model system for solids or in quantum information.

Potential applications

The wave patterns of excited Bose-Einstein condensates are very responsive to their environment. Thus, by investigating these patterns it is possible to produce highly responsive interferometric sensors, e.g. for magnetic fields but also for gravitation. For the manipulation und excitation of condensates light is used. All Bose-Einstein condensates produced so far worldwide have a common disadvantage: Their broad optical transitions do not allow any precision excitations. In the case of Bose-Einstein condensates from alkaline earth atoms (e.g. calcium and strontium, both of which are being investigated at PTB as to their suitability as optical clocks) their super-narrow optical transitions offer novel potential for precision investigations. Conceivable is their use on satellites, e.g. by geophysicists, who study the deformation of the Earth and thus the change in gravitation.

Method

At PTB it was possible for the first time worldwide to produce a Bose-Einstein condensate from alkaline earth atoms. To this end, 2ˇ106 calcium atoms precooled in a magneto-optical trap were loaded at a temperature of 20ľK into optical forceps. Due to the weakening of the holding force hot atoms vaporize, whereby the remaining atoms are cooled. At a temperature of typically 200 nK the critical temperature is reached with 105 atoms. Of these, approx. 2ˇ104 atoms can be cooled to form a pure condensate.


Story Source:

The above story is based on materials provided by Physikalisch-Technische Bundesanstalt (PTB). Note: Materials may be edited for content and length.


Journal Reference:

  1. Sebastian Kraft, Felix Vogt, Oliver Appel, Fritz Riehle, and Uwe Sterr. Bose-Einstein Condensation of Alkaline Earth Atoms: 40Ca. Physical Review Letters, 2009; DOI: 10.1103/PhysRevLett.103.130401

Cite This Page:

Physikalisch-Technische Bundesanstalt (PTB). "First Bose-Einstein Condensate With Calcium Atoms Produced." ScienceDaily. ScienceDaily, 24 September 2009. <www.sciencedaily.com/releases/2009/09/090922100141.htm>.
Physikalisch-Technische Bundesanstalt (PTB). (2009, September 24). First Bose-Einstein Condensate With Calcium Atoms Produced. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/09/090922100141.htm
Physikalisch-Technische Bundesanstalt (PTB). "First Bose-Einstein Condensate With Calcium Atoms Produced." ScienceDaily. www.sciencedaily.com/releases/2009/09/090922100141.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) — Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) — Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) — Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins