Featured Research

from universities, journals, and other organizations

Lab Demonstrates 3-D Printing In Glass

Date:
September 27, 2009
Source:
University of Washington
Summary:
A team of engineers and artists has developed a way to create glass objects using a conventional 3-D printer. The technique allows a new type of material to be used in such devices.

An object printed from powdered glass, using the Solheim Lab's new Vitraglyphic process.
Credit: Image courtesy of University of Washington

A team of engineers and artists working at the University of Washington's Solheim Rapid Manufacturing Laboratory has developed a way to create glass objects using a conventional 3-D printer. The technique allows a new type of material to be used in such devices.

The team's method, which it named the Vitraglyphic process, is a follow-up to the Solheim Lab's success last spring printing with ceramics.

"It became clear that if we could get a material into powder form at about 20 microns we could print just about anything," said Mark Ganter, a UW professor of mechanical engineering and co-director of the Solheim Lab. (Twenty microns is less than one thousandth of an inch.)

Three-dimensional printers are used as a cheap, fast way to build prototype parts. In a typical powder-based 3-D printing system, a thin layer of powder is spread over a platform and software directs an inkjet printer to deposit droplets of binder solution only where needed. The binder reacts with the powder to bind the particles together and create a 3-D object.

Glass powder doesn't readily absorb liquid, however, so the approach used with ceramic printing had to be radically altered.

"Using our normal process to print objects produced gelatin-like parts when we used glass powders," said mechanical engineering graduate student Grant Marchelli, who led the experimentation. "We had to reformulate our approach for both powder and binder."

By adjusting the ratio of powder to liquid the team found a way to build solid parts out of powdered glass purchased from Spectrum Glass in Woodinville, Wash. Their successful formulation held together and fused when heated to the required temperature.

Glass is a material that can be transparent or opaque, but is distinguished as an inorganic material (one which contains no carbon) that solidifies from a molten state without the molecules forming an ordered crystalline structure. Glass molecules remain in a disordered state, so glass is technically a super-cooled liquid rather than a true solid.

In an instance of new technology rediscovering and building on the past, Ganter points out that 3-D printed glass bears remarkable similarities to pate de verre, a technique for creating glassware. In pate de verre, glass powder is mixed with a binding material such as egg white or enamel, placed in a mold and fired. The technique dates from early Egyptian times. With 3-D printing the technique takes on a modern twist.

As with its ceramics 3-D printing recipe, the Solheim lab is releasing its method of printing glass for general use.

"By publishing these recipes without proprietary claims, we hope to encourage further experimentation and innovation within artistic and design communities," said Duane Storti, a UW associate professor of mechanical engineering and co-director of the Solheim Lab.

Artist Meghan Trainor, a graduate student in the UW's Center for Digital Arts and Experimental Media working at the Solheim Lab, was the first to use the new method to produce objects other than test shapes.

"Creating kiln-fired glass objects from digital models gives my ideas an immediate material permanence, which is a key factor in my explorations of digital art forms," Trainor said. "Moving from idea to design to printed part in such a short period of time creates an engaging iterative process where the glass objects form part of a tactile feedback loop."

Ronald Rael, an assistant professor of architecture at the University of California, Berkeley, has been working with the Solheim Lab to set up his own 3-D printer. Rael is working on new kinds of ceramic bricks that can be used for evaporative cooling systems.

"3-D printing in glass has huge potential for changing the thinking about applications of glass in architecture," Rael said. "Before now, there was no good method of rapid prototyping in glass, so testing designs is an expensive, time-consuming process." Rael adds that 3-D printing allows one to insert different forms of glass to change the performance of the material at specific positions as required by the design.

The new method would also create a way to repurpose used glass for new functions, Ganter said. He sees recycled glass as a low-cost material that can help bring 3-D printing within the budget of a broader community of artists and designers.

The Solheim Rapid Prototyping Laboratory, on the UW's Seattle campus, specializes in advanced research and teaching in solid modeling, rapid prototyping, and innovative 3-D printing systems.


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University of Washington. "Lab Demonstrates 3-D Printing In Glass." ScienceDaily. ScienceDaily, 27 September 2009. <www.sciencedaily.com/releases/2009/09/090924153640.htm>.
University of Washington. (2009, September 27). Lab Demonstrates 3-D Printing In Glass. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2009/09/090924153640.htm
University of Washington. "Lab Demonstrates 3-D Printing In Glass." ScienceDaily. www.sciencedaily.com/releases/2009/09/090924153640.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins