Featured Research

from universities, journals, and other organizations

Light Shed On Kidney Repair And Disease

Date:
October 1, 2009
Source:
Monash University
Summary:
Researchers have shed new light on the microscopic antennas in the kidney that are involved in the organ's repair process. The work may be a crucial step towards a cure for polycystic kidney disease, a potentially fatal disease that affects more than one in 1000 people.

A study by Monash University researchers has shed new light on the microscopic antennas in the kidney that are involved in the organ's repair process.

The work may be a crucial step towards a cure for polycystic kidney disease, a potentially fatal disease that affects more than one in 1000 people.

The study, led by Dr James Deane a researcher at the Centre for Inflammatory Disease at the Monash Medical Centre, showed how kidney repair processes are controlled and helps explain the cause of polycystic kidney disease.

The findings have appeared in the latest edition of the Journal of the American Society of Nephrology.

"We have shown for the first time that the hair-like structures on kidney cells, called cilia, change their length in response to injury in human patients, growing up to four times their original length in the later stages of kidney repair," Dr Deane said.

"These hair-like structures are antennas and the increases in their length amplify the signals they send to kidney cells at vital stages of repair. We think this is how they turn off the repair process when it is complete and allow the kidney to start working normally again"

Dr Deane said that if the switching on and off the repair process is not properly controlled, rapidly reproducing cells will distort the tubes of the kidney and prevent them from functioning properly, which is what appears to happen in people that have polycystic kidney disease, a condition which is currently untreatable.

"Our research helps put a logical framework behind what is happening in polycystic kidney disease, as the mutations that cause the disease can damage the hair-like structures of kidneys cells," Dr Deane said.

"We hope that this work will lead to new ways of treating both kidney injury and polycystic kidney disease."

The kidney is made up of about a million tiny living tubes that produce urine to rid the body of waste products. The cells that make up these tubes have hair-like structures, which are two thousandths of a millimetre long and respond to urine flow by sending reassuring signals back to the cells.

In an injured kidney there is a reduction in urine flow and reassuring signals from the hair-like structures are diminished. This causes kidney cells go into repair mode. Surviving kidney cells take on a new form that allows them to reproduce rapidly to replace cells that have died. When enough cells have been produced it is important that kidney cells stop reproducing and return to their normal form. This is where some extra input from the hair-like structures appears to be required.


Story Source:

The above story is based on materials provided by Monash University. Note: Materials may be edited for content and length.


Cite This Page:

Monash University. "Light Shed On Kidney Repair And Disease." ScienceDaily. ScienceDaily, 1 October 2009. <www.sciencedaily.com/releases/2009/09/090930102538.htm>.
Monash University. (2009, October 1). Light Shed On Kidney Repair And Disease. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2009/09/090930102538.htm
Monash University. "Light Shed On Kidney Repair And Disease." ScienceDaily. www.sciencedaily.com/releases/2009/09/090930102538.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Nigeria Ups Ebola Stakes on 1st Death

Nigeria Ups Ebola Stakes on 1st Death

Reuters - Business Video Online (July 29, 2014) Nigerian authorities have shut and quarantined a Lagos hospital where a Liberian man died of the Ebola virus, the first recorded case of the highly-infectious disease in Africa's most populous economy. David Pollard reports Video provided by Reuters
Powered by NewsLook.com
Running 5 Minutes A Day Might Add Years To Your Life

Running 5 Minutes A Day Might Add Years To Your Life

Newsy (July 29, 2014) According to a new study, just five minutes of running or jogging a day could add years to your life. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Poses Little Threat To U.S.: CDC

Ebola Outbreak Poses Little Threat To U.S.: CDC

Newsy (July 29, 2014) The Ebola outbreak in West Africa poses little threat to Americans, according to officials with the Centers for Disease Control and Prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins