Featured Research

from universities, journals, and other organizations

Using Satellites To Predict Water Problems In Developing Countries

Date:
October 2, 2009
Source:
Delft University of Technology
Summary:
Drought, high water and the availability of water can all be predicted more easily by using modern satellite information. This is particularly relevant in river basins where little ‘ground-level data’ is available.

Water cycle captured by GRACE.
Credit: Image courtesy of Delft University of Technology

Many of the world's river basins are not subject to accurate monitoring, especially those in developing countries. The few measurements that have been taken in these areas are often uncertain, incomplete or chronologically inconsistent. This makes it difficult to construct sound hydrological models. Such models are essential to predict drought, high water and the availability of water.

In the long term, they will help us to estimate what effects changes in the surface of the land or changes in the climate will have on the water balance and the flow rate of rivers.

'Fortunately, increasing amounts of relevant data are being made available free of charge. Satellite data is particularly interesting in this respect. Important factors such as rainfall, evaporation, radiation, soil moisture and water retention can now be estimated on the basis of raw satellite measurements,' according to the Delft researcher Hessel Winsemius.

The GRACE satellite and evaporation

In his research, Winsemius was able to combine the scarce 'ground-level data' from poorly monitored river basins with hydrological expertise and modern satellite data, enabling him to improve the existing hydrological models. He used satellite-based estimates of rainfall and evaporation rates and gravity measurements from the GRACE satellite and applied this to the Zambezi river basin, for example. 'This river basin provides us with an excellent opportunity to put the new methods directly into practice.'

Luangwa

The methods have proved successful. From a case study on the Upper Zambezi, it has turned out that a combination of ground-level data, data from GRACE and an expert knowledge of the hydrology of the area have produced a model with a robust structure.

‘A second case study on a sizeable tributary of the Zambezi – the Luangwa – demonstrated that the values of the model parameters can be indirectly adjusted on the basis of small amounts of data originating from the low-quality ground-level data on the one hand, and the evaporation rate estimates from the satellite measurements on the other. Of course, this leads to a considerable reduction in the uncertainty of the model,’ says Winsemius.

One of Winsemius' other conclusions is that close cooperation is required between experts from the field of geodesy on the one side and experts in hydrology on the other, in order to make the GRACE satellite data useful for hydrological applications.


Story Source:

The above story is based on materials provided by Delft University of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Delft University of Technology. "Using Satellites To Predict Water Problems In Developing Countries." ScienceDaily. ScienceDaily, 2 October 2009. <www.sciencedaily.com/releases/2009/09/090930102924.htm>.
Delft University of Technology. (2009, October 2). Using Satellites To Predict Water Problems In Developing Countries. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/09/090930102924.htm
Delft University of Technology. "Using Satellites To Predict Water Problems In Developing Countries." ScienceDaily. www.sciencedaily.com/releases/2009/09/090930102924.htm (accessed July 23, 2014).

Share This




More Space & Time News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins