Featured Research

from universities, journals, and other organizations

One Small Step For Neurons, One Giant Leap For Nerve Cell Repair

Date:
October 9, 2009
Source:
McGill University
Summary:
The repair of damaged nerve cells is a major problem in medicine today. A new study is a significant advance towards a solution for neuronal repair. Scientists have created nerve cell connections in vitro using artificial substances, a major advance towards nerve cell repair.

The repair of damaged nerve cells is a major problem in medicine today. A new study by researchers at the Montreal NeurologicaI Institute and Hospital (The Neuro) and McGill University, is a significant advance towards a solution for neuronal repair. The study featured on the cover of the October 7 issue of Journal of Neuroscience, is the first to show that nerve cells will grow and make meaningful, functional contacts, or synapses - the specialized junctions through which neurons signal to each other - with an artificial component, in this case, plastic beads coated with a substance that encourages adhesion, and attracts the nerve cells.

"Many therapies, most still in the conceptual stage, are aimed at restoring the connection between the nerve cell and the severed nerve fibres that innervate a target tissue, typically muscle," says Dr. David Colman, Director of The Neuro and principal investigator in the study. "Traditional approaches to therapies would require the re-growth of a severed nerve fibre a distance of up to one meter in order to potentially restore function. The approach we are using however bypasses the need to force nerve cells to artificially grow these long distances, and eliminates the demand for two neurons to make a synapse, both of which are considerable obstacles to neuronal repair in a damaged system."

"We are tackling this problem in an entirely new way, as part of the McGill Program in NeuroEngineering," says Dr. Anna Lisa Lucido, who conducted research for the study as part of her PhD research at The Neuro and is currently a post-doctoral fellow at UCSF. "This program, spearheaded by Dr. Colman, is a multi-disciplinary consortium that brings together the knowledge, expertise and perspectives of 40 scientists from diverse fields to focus on the challenge of neuronal repair in the central nervous system. The approach we have taken is to help healthy nerve cells form functional contacts with artificial substrates in order to create a paradigm that can be adapted to model systems in which neurons are damaged. That approach will be combined with strategies to encourage the outgrowth of damaged neuronal branches through which these connections, or synapses, are formed. It's a challenging endeavour, but the ability to trigger connections to form on command is a promising start. Our ultimate goal is to create a combined platform in which damaged cells could be encouraged to both re-grow and re-establish their functional connections."

The synapses generated in this study are virtually identical to their natural counterparts except the 'receiving' side of the synapse is an artificial plastic rather than another nerve cell or the target tissue itself. This study is the first, using these particular devices, to show that adhesion is a fundamental first step in triggering synaptic assembly.

"Even though components of synapses have been induced in similar earlier studies, their functionality was not proven. In order to assess function - that is transmission of a signal from the synapse, we stimulated the nerve cells with electricity, sending the signal, an action potential, to the synapse. By artificially stimulating nerve cells in the presence of dyes, we could see that transmission had taken place as the dyes were taken up by the synapses."

"We believe that within the next five years we will have a fully functional device that will be able to directly convey natural nerve cell signals from the nerve cell itself to an artificial matrix containing a mini-computer that will communicate wirelessly with target tissues," says Dr. Colman. These results not only provide a model to understand how neurons are formed which can be employed in subsequent studies but, provides hope for those affected and potentially holds promise for the use of artificial substrates in the repair of damaged nerves.


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Cite This Page:

McGill University. "One Small Step For Neurons, One Giant Leap For Nerve Cell Repair." ScienceDaily. ScienceDaily, 9 October 2009. <www.sciencedaily.com/releases/2009/10/091007124402.htm>.
McGill University. (2009, October 9). One Small Step For Neurons, One Giant Leap For Nerve Cell Repair. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2009/10/091007124402.htm
McGill University. "One Small Step For Neurons, One Giant Leap For Nerve Cell Repair." ScienceDaily. www.sciencedaily.com/releases/2009/10/091007124402.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Cases Keep Coming for Monrovia's Island Hospital

Ebola Cases Keep Coming for Monrovia's Island Hospital

AFP (Oct. 1, 2014) A look inside Monrovia's Island Hospital, a key treatment centre in the fight against Ebola in Liberia's capital city. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Ebola Puts Stress on Liberian Health Workers

Ebola Puts Stress on Liberian Health Workers

AP (Oct. 1, 2014) The Ebola outbreak is putting stress on first responders in Liberia. Ambulance drivers say they are struggling with chronic shortages of safety equipment and patients who don't want to go to the hospital. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Doctors Reassure Public Ebola Patient Won't Cause Outbreak

Doctors Reassure Public Ebola Patient Won't Cause Outbreak

Newsy (Sep. 30, 2014) After the announcement that the first U.S. patient had been diagnosed with Ebola, doctors were quick to say a U.S. outbreak is highly unlikely. Video provided by Newsy
Powered by NewsLook.com
TX Hospital Confirms Patient Admitted With Ebola

TX Hospital Confirms Patient Admitted With Ebola

AP (Sep. 30, 2014) Medical officials from Texas Health Presbyterian Hospital confirm they are treating a patient with the Ebola virus, the first case found in the US. (Sept. 30 Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins