Featured Research

from universities, journals, and other organizations

Archaeopteryx Was Not Very Bird-like: Inside The First Bird, Surprising Signs Of A Dinosaur

Date:
October 9, 2009
Source:
Florida State University
Summary:
The raptor-like Archaeopteryx has long been viewed as the archetypal first bird, but new research reveals that it was actually a lot less "bird-like" than scientists had believed.

This is the slab and counter slab of the Munich Archaeopteryx.
Credit: Mick Ellison/AMNH

The raptor-like Archaeopteryx has long been viewed as the archetypal first bird, but new research reveals that it was actually a lot less "bird-like" than scientists had believed.

Related Articles


In fact, the landmark study led by paleobiologist Gregory M. Erickson of The Florida State University has upended the iconic first-known-bird image of Archaeopteryx (from the Greek for "ancient wing"), which lived 150 million years ago during the Late Jurassic period in what is now Germany. Instead, the animal has been recast as more of a feathered dinosaur -- bird on the outside, dinosaur on the inside.

That's because new, microscopic images of the ancient cells and blood vessels inside the bones of the winged, feathered, claw-handed creature show unexpectedly slow growth and maturation that took years, similar to that found in dinosaurs, from which birds evolved. In contrast, living birds grow rapidly and mature in a matter of weeks.

Also groundbreaking is the finding that the rapid bone growth common to all living birds but surprisingly absent from the Archaeopteryx was not necessary for avian dinosaur flight.

The study is published in the Oct. 9, 2009, issue of the journal PLoS ONE. In addition to Erickson, an associate professor in Florida State's Department of Biological Science and a research associate at the American Museum of Natural History, co-authors include Florida State University biologist Brian D. Inouye and other U.S. scientists, as well as researchers from Germany and China.

"Living birds mature very quickly," Erickson said. "That's why we rarely see baby birds among flocks of invariably identical-size pigeons. Slow-growing animals such as Archaeopteryx would look foreign to contemporary bird-watchers."

Erickson said evidence already confirms that birds are, in fact, dinosaurs. "But just how dinosaur-like -- or even bird-like -- was the first bird?" he asked. "Almost nothing had been known of Archaeopteryx biology. There has been debate as to how well it flew, if at all. Some have suggested that early bird physiology may have been very different from living birds, but no one had tested fossils that were close to the base of bird ancestry."

Fossilized remains of Archaeopteryx were found in Germany in 1860, one year after Charles Darwin's "Origin of Species" was published. With its combination of bird-like features, including feathers and a wishbone, and reptilian ones -- teeth, three-fingered hands, a long bony tail -- the skeleton made evolutionary theory more credible. The 1860s evolutionist Thomas Henry Huxley saw the Archaeopteryx as a perfect transition between birds and reptiles. Erickson calls it "the poster child for evolution."

"For our study, which required tremendous collaboration, we set out to determine how Archaeopteryx grew and compare its growth to living birds, closely related non-avian dinosaurs, and other early birds that came after it," Erickson said. "I went to Munich with my colleague Mark Norell from the American Museum of Natural History, and we met with Oliver Rauhut, curator of the Bavarian State Collection for Palaeontology and Geology, which houses a small juvenile Archaeopteryx that is one of 10 specimens discovered to date. From that specimen, we extracted tiny bone chips and then examined them microscopically."

Surprisingly, the bones of the juvenile Archaeopteryx were not the highly vascularized, fast-growing type, as in other avian dinosaurs. Instead, Erickson found lizard-like, dense, nearly avascular bone.

"It led us to ask, 'Did Archaeopteryx grow in a unique way?'" he said.

To explain the strange bone type, the researchers also examined different-size species of dinosaurs that were close relatives of Archaeopteryx, including Deinonychosaurs, the raptors of "Jurassic Park" fame. They then looked to colleagues in China for specimens of two of the earliest birds: Jeholornis prima, a long-tailed creature, and the short-tailed Sapeornis chaochengensi, which had three fingers and teeth.

"In the smallest dinosaur specimens, and in an early bird, we found the same bone type as in the juvenile Archaopteryx specimen," Erickson said.

Next, the research team plugged bone formation rates into the sizes of the Archaeopteryx femora (thigh bones) to predict its rate of growth.

"We learned that the adult would have been raven-sized and taken about 970 days to mature," Erickson said. "Some same-size birds today can do likewise in eight or nine weeks. In contrast, maximal growth rates for Archaeopteryx resemble dinosaur rates, which are three times slower than living birds and four times faster than living reptiles.

"From these findings, we see that the physiological and metabolic transition into true birds occurred millions of years after Archaeopteryx," he said. "But, perhaps equally important, we've shown that avians were able to fly even with dinosaur physiology."

Inouye added, "Our data on dinosaur growth rates and survivorship are bringing modern physiology and population biology to a field that has historically focused more on finding and naming fossil species."

Funding for the study came from the National Science Foundation (NSF); Germany's Deutsche Forschungsgemeinschaft (DFG); and The Major Basic Research Projects of the Ministry of Science and Technology of China.

In addition to Gregory Erickson (first author) and Brian Inouye of Florida State University's Department of Biological Science in Tallahassee, Fla., co-authors of the PLoS ONE paper are Oliver W. M. Rauhut, Bavarian State Collection for Palaeontology and Geology, LMU Munich, Munich, Germany; Zhonghe Zhou, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; Alan Turner, Department of Anatomical Sciences, Stony Brook University, Stony Brook, N.Y.; Dongyu Hu, Paleontological Institute, Shenyang Normal University, Shenyang, China; and Mark Norell, Division of Paleontology, American Museum of Natural History, New York, N.Y.


Story Source:

The above story is based on materials provided by Florida State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erickson et al. Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx. PLoS ONE, 2009; 4 (10): e7390 DOI: 10.1371/journal.pone.0007390

Cite This Page:

Florida State University. "Archaeopteryx Was Not Very Bird-like: Inside The First Bird, Surprising Signs Of A Dinosaur." ScienceDaily. ScienceDaily, 9 October 2009. <www.sciencedaily.com/releases/2009/10/091009090436.htm>.
Florida State University. (2009, October 9). Archaeopteryx Was Not Very Bird-like: Inside The First Bird, Surprising Signs Of A Dinosaur. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2009/10/091009090436.htm
Florida State University. "Archaeopteryx Was Not Very Bird-like: Inside The First Bird, Surprising Signs Of A Dinosaur." ScienceDaily. www.sciencedaily.com/releases/2009/10/091009090436.htm (accessed October 30, 2014).

Share This



More Fossils & Ruins News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dracula's Dungeon May Have Been Found in Turkey

Dracula's Dungeon May Have Been Found in Turkey

AP (Oct. 29, 2014) — Historians think they may have discovered a dungeon in Turkey where the Romanian prince who inspired Count Dracula was once held captive. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Study Doesn't Prove Megalodons Are Extinct, Never Needed To

Study Doesn't Prove Megalodons Are Extinct, Never Needed To

Newsy (Oct. 27, 2014) — How and why a study about when the giant prehistoric shark Megalodon went extinct got picked up as "proof" that it is. Video provided by Newsy
Powered by NewsLook.com
One-of-a-Kind BMW 507 Boat Found After 6 Decades

One-of-a-Kind BMW 507 Boat Found After 6 Decades

Buzz60 (Oct. 27, 2014) — BMW made just one BMW 507 boat, but it was lost for decades until a young man found and restored it. TC Newman (@PurpleTCNewman) shows the gorgeous boat! Video provided by Buzz60
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins