Featured Research

from universities, journals, and other organizations

Nitrogen Mysteries In Urban Grasslands

Date:
October 22, 2009
Source:
American Society of Agronomy
Summary:
Urban grasslands are an extremely common, but poorly studied ecosystem type. Many receive high rates of fertilizer, creating concerns about nutrient runoff and greenhouse gas emissions. Recent research has been focused on long-term study plots to evaluate multiple ecological variables in different components of the urban landscape.

Areas of turf-forming species created and maintained by humans for aesthetic and recreational (not grazing) purposes, i.e. “urban grasslands” are an extremely common, but poorly studied ecosystem type.

Related Articles


There are over 150,000 km2 of urban grasslands in the U.S. and many receive high rates of fertilizer, creating concerns about nutrient runoff to streams, lakes, and estuaries and emissions of greenhouse gases such as nitrous oxide (N2O) to the atmosphere. Most turfgrass research has been done on highly controlled research plots which can be very different than actual urban grasslands which have highly variable management regimes and physical, biological, and chemical conditions.

In the Baltimore Ecosystem Study (BES, http://beslter.org), one of two urban components of the U.S. National Science Foundation (NSF) Long Term Ecological Research (LTER) network, scientists from the Cary Institute of Ecosystem Studies (Peter Groffman), the U.S. Forest Service (Richard Pouyat, Ian Yesilonis) and the University of North Carolina (Lawrence Band) established a series of long-term study plots to evaluate multiple ecological variables in different components of the urban landscape.

An NSF-funded Research Experience for Undergraduates student (Candiss Williams) used these plots for a summer research project. Forest plots were established in urban and rural parks for comparison with grass plots that vary in management intensity, ranging from unfertilized and infrequently mowed to high levels of fertilizer and herbicide input and frequent mowing. Plots were instrumented with lysimeters to measure nutrient leaching losses, soil chamber bases for measuring soil/atmosphere fluxes of N2O, and sensors for soil temperature and moisture. Results on nitrate (NO3-) leaching and N2O fluxes over a period of significant climatic variability (2001–2005) were presented in a paper in the September–October 2009 issue of Journal of Environmental Quality.

Differences in NO3- leaching and N2O flux between forests and grasslands were not as high as expected given the higher frequency of disturbance and fertilization in the grasslands. Annual NO3- leaching was usually higher in grass than forest plots, but in a very dry year and when a disturbed forest plot was included in the analysis, differences were small and insignificant. There were few differences in N2O between grass and forest plots, and markedly higher fluxes in wet years. In a dry year, N losses from the grasslands were equal to less than 10% of the amount of N applied in fertilizer, and even in a wet year, losses were less than 40%. Lots of N appears to be retained in urban grasslands, likely because they support rapidly growing vegetation and high stocks of soil organic matter.

While surprising, these results do not suggest that we should not be concerned about the environmental impacts of urban grasslands. If leaching losses equal 40% of the amount of N applied in fertilizer, and high rates of fertilizer (e.g., 200 kg N ha-1 yr-1) are applied, lawns will have a strongly negative effect on receiving water quality. However, our results suggest that urban grasslands have considerable capacity for N retention that should be studied and considered in evaluations of land-use change and in the development of management plans for urban and suburban watersheds.


Story Source:

The above story is based on materials provided by American Society of Agronomy. Note: Materials may be edited for content and length.


Journal Reference:

  1. Groffman, Peter M., Williams, Candiss O., Pouyat, Richard V., Band, Lawrence E., Yesilonis, Ian D. Nitrate Leaching and Nitrous Oxide Flux in Urban Forests and Grasslands. Journal of Environmental Quality, 2009; 38 (5): 1848 DOI: 10.2134/jeq2008.0521

Cite This Page:

American Society of Agronomy. "Nitrogen Mysteries In Urban Grasslands." ScienceDaily. ScienceDaily, 22 October 2009. <www.sciencedaily.com/releases/2009/10/091013132127.htm>.
American Society of Agronomy. (2009, October 22). Nitrogen Mysteries In Urban Grasslands. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2009/10/091013132127.htm
American Society of Agronomy. "Nitrogen Mysteries In Urban Grasslands." ScienceDaily. www.sciencedaily.com/releases/2009/10/091013132127.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins