Featured Research

from universities, journals, and other organizations

Saving Sand: South Carolina Beaches Become A Model For Preservation

Date:
October 28, 2009
Source:
United States Geological Survey
Summary:
While most people head to Myrtle Beach for vacation, a group of scientists have been hitting the famous South Carolina beach for years to figure out how to keep the sand from washing away. Their work is a model for beach preservation that can apply elsewhere.

Myrtle Beach, South Carolina. While most people head to Myrtle Beach for vacation, a group of scientists have been hitting the famous South Carolina beach for years to figure out how to keep the sand from washing away.
Credit: iStockphoto/Denis Jr. Tangney

While most people head to Myrtle Beach for vacation, a group of scientists have been hitting the famous South Carolina beach for years to figure out how to keep the sand from washing away.

Although they studied only a limited segment of beach, their work is a model for beach preservation that can apply elsewhere. And with talk of "balancing the sand budget" and money saved on restoration, their findings sound financial.

The study will be presented to scientists from around the world at the International Geological Programs Annual Conference, Oct. 25 to 31 in Myrtle Beach.

"Effective beach preservation requires knowing the beach's sand budget and understanding the geology that constrains it," said U.S. Geological Survey lead scientist Walter Barnhardt. "It takes a systematic approach and strong partnerships at all levels of government with neighborhood associations and universities to keep a beach from simply washing away."

The main objective of this 7-year study, done in cooperation with the South Carolina Sea Grant Consortium, was to improve projections of coastal change by determining the geologic features and ocean processes that control sediment movement along the coast.

"As a result of this work, we were able to identify offshore sand sources that could be used for future beach replenishment without causing a bigger erosion problem elsewhere," said Barnhardt.

Controlling beach erosion will likely become more difficult as a result of climate change with its attendant sea-level rise and increase in the number and intensity of storms. This is particularly true in places like South Carolina that have a broad, low-elevation coast and a sand shortage.

"The comprehensive nature of this study -- considering the geologic framework, behavior and driving processes regionally -- has resulted in a remarkable baseline for better managing our beach and near- shore resources," said Paul Gayes, Director of Coastal Carolina University's Center for Marine and Wetland Studies.

"From inventory of potential future beach nourishment sand resources, to distribution of important hardbottom fish habitat, to models of beach behavior, this study forms the starting point for many present and future efforts. This work is regularly cited as a model approach and result for similar studies and efforts around the country," said Gayes.

For this study, scientists examined land and marine environments in a 62-mile-long segment of South Carolina's coast. The swath extends more than 3 miles inland and 6 miles seaward. They tracked waves and sand movement, drilled cores, mapped the topography and geology onshore and offshore, and monitored coastal change.

Key Findings:

  • Sand is a scarce resource near Myrtle Beach
    • The beaches are thin ribbons of sand that sit on top of sedimentary rocks. They receive little or no sand from nearby rivers.
    • Offshore, there is little sand to wash ashore and replenish the beach. Large expanses offshore are exposed as hard grounds that are locally overlain by sand less than 3 feet thick.
  • Sand is transported primarily from northeast to southwest in the area. Large sand deposits have accumulated seaward of Murrell's Inlet and Winyah Bay, SC. These and other sand deposits could serve as offshore sources of beach nourishment in the future.
  • Effective beach management requires a regional, systematic effort to
    • understand the geology and how it constrains sand supplies and sand movement,
    • determine patterns of shoreline change by surveying beaches at regular intervals over several years and
    • identify ocean processes that drive coastal erosion.
  • A detailed record of coastal change provides guidance for land use and a rationale for development decisions such as determining setbacks necessary to protect property.
  • Climate change will affect many beaches; low elevation beaches are vulnerable over greater inland areas.

Coastal Change Along the Coast of Northeastern South Carolina -- The South Carolina Coastal Erosion Study (USGS Circular 1339).


Story Source:

The above story is based on materials provided by United States Geological Survey. Note: Materials may be edited for content and length.


Cite This Page:

United States Geological Survey. "Saving Sand: South Carolina Beaches Become A Model For Preservation." ScienceDaily. ScienceDaily, 28 October 2009. <www.sciencedaily.com/releases/2009/10/091023163509.htm>.
United States Geological Survey. (2009, October 28). Saving Sand: South Carolina Beaches Become A Model For Preservation. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2009/10/091023163509.htm
United States Geological Survey. "Saving Sand: South Carolina Beaches Become A Model For Preservation." ScienceDaily. www.sciencedaily.com/releases/2009/10/091023163509.htm (accessed September 17, 2014).

Share This



More Earth & Climate News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins