Featured Research

from universities, journals, and other organizations

When glass develops into a shell: New findings in diatoms

Date:
November 18, 2009
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Diatoms are microalgae that are responsible for nearly a quarter of the oxygen we breathe, but how does their glass-like skeleton develop? Researchers have solved part of the mystery concerning these organisms, so abundant in our oceans, by discovering several genes that are involved in the storage and transport of silica, the principal constituent of glass.

Diatoms are microalgae that are responsible for nearly a quarter of the oxygen we breathe, but how does their glass-like skeleton develop? Researchers from CNRS and ENS Paris have solved part of the mystery concerning these organisms, so abundant in our oceans, by discovering several genes that are involved in the storage and transport of silica, the principal constituent of glass.

Published in the journal PLoS One, their study suggests a reorganization of certain genes that optimizes their response in the presence of silica. Above all, they confirm the important silicon requirements of diatoms. Elucidation of these mechanisms will enable a clearer understanding of glass chemistry and the anticipation of certain environmental modifications linked to the silicon and carbon cycles.

Silicon, the most abundant element on Earth after oxygen, has long been used by architecture and industry, notably as a component in glass (in the form of silica). This substance is essential to the growth of certain species of microalgae called diatoms. These astonishingly diverse, microscopic algae prosper in most of the oceans, rivers and lakes of the world. Endowed with a glass-like shell, they are one of the most abundant types of phytoplankton and are of considerable interest to scientists because of their numerous applications (as a model in the field of nanotechnologies , for their role in climate regulation , etc.).

A team of scientists led by Pascal Jean Lopez from CNRS has tried to understand the mechanisms that control the formation of their glass-like extracellular skeleton. Indeed, the processes involved in their assimilation, storage and transport of silicon have so far remained poorly understood. Clarification of these factors would improve our overall understanding of diatoms. And the stakes are high: these algae produce nearly a quarter of the oxygen we breathe, which is almost as much as tropical forests.

This study focused on one of the rare diatom species in which the synthesis of a silicon skeleton is not obligatory, called Phaeodactylum tricornutum. The scientists thus revealed that even if this particular species can survive without silicon, it still seeks to assimilate it. Above all, they discovered that a grouping of certain genes must have been favored during its evolution. This spatial rearrangement enabled a better coordination of the genome response in the presence of silicic acid (the dissolved form of silicon). The scientists also managed to identify genes likely to be implicated in the storage and metabolism of this compound, as well as demonstrating certain types of gene regulation responsible for silicon transport, both at the level of their expression and their cellular localization.

"Elucidation at the molecular level of silicon biomineralization is essential if we are to predict the effects of anthropogenic environmental changes on the biogeochemical cycle of silicon," explained Lopez.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. Sapriel et al. Genome-Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters. PLoS ONE, 2009; 4 (10): e7458 DOI: 10.1371/journal.pone.0007458

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "When glass develops into a shell: New findings in diatoms." ScienceDaily. ScienceDaily, 18 November 2009. <www.sciencedaily.com/releases/2009/10/091029151619.htm>.
CNRS (Délégation Paris Michel-Ange). (2009, November 18). When glass develops into a shell: New findings in diatoms. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/10/091029151619.htm
CNRS (Délégation Paris Michel-Ange). "When glass develops into a shell: New findings in diatoms." ScienceDaily. www.sciencedaily.com/releases/2009/10/091029151619.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) — An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) — A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) — ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins