Featured Research

from universities, journals, and other organizations

When glass develops into a shell: New findings in diatoms

Date:
November 18, 2009
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Diatoms are microalgae that are responsible for nearly a quarter of the oxygen we breathe, but how does their glass-like skeleton develop? Researchers have solved part of the mystery concerning these organisms, so abundant in our oceans, by discovering several genes that are involved in the storage and transport of silica, the principal constituent of glass.

Diatoms are microalgae that are responsible for nearly a quarter of the oxygen we breathe, but how does their glass-like skeleton develop? Researchers from CNRS and ENS Paris have solved part of the mystery concerning these organisms, so abundant in our oceans, by discovering several genes that are involved in the storage and transport of silica, the principal constituent of glass.

Related Articles


Published in the journal PLoS One, their study suggests a reorganization of certain genes that optimizes their response in the presence of silica. Above all, they confirm the important silicon requirements of diatoms. Elucidation of these mechanisms will enable a clearer understanding of glass chemistry and the anticipation of certain environmental modifications linked to the silicon and carbon cycles.

Silicon, the most abundant element on Earth after oxygen, has long been used by architecture and industry, notably as a component in glass (in the form of silica). This substance is essential to the growth of certain species of microalgae called diatoms. These astonishingly diverse, microscopic algae prosper in most of the oceans, rivers and lakes of the world. Endowed with a glass-like shell, they are one of the most abundant types of phytoplankton and are of considerable interest to scientists because of their numerous applications (as a model in the field of nanotechnologies , for their role in climate regulation , etc.).

A team of scientists led by Pascal Jean Lopez from CNRS has tried to understand the mechanisms that control the formation of their glass-like extracellular skeleton. Indeed, the processes involved in their assimilation, storage and transport of silicon have so far remained poorly understood. Clarification of these factors would improve our overall understanding of diatoms. And the stakes are high: these algae produce nearly a quarter of the oxygen we breathe, which is almost as much as tropical forests.

This study focused on one of the rare diatom species in which the synthesis of a silicon skeleton is not obligatory, called Phaeodactylum tricornutum. The scientists thus revealed that even if this particular species can survive without silicon, it still seeks to assimilate it. Above all, they discovered that a grouping of certain genes must have been favored during its evolution. This spatial rearrangement enabled a better coordination of the genome response in the presence of silicic acid (the dissolved form of silicon). The scientists also managed to identify genes likely to be implicated in the storage and metabolism of this compound, as well as demonstrating certain types of gene regulation responsible for silicon transport, both at the level of their expression and their cellular localization.

"Elucidation at the molecular level of silicon biomineralization is essential if we are to predict the effects of anthropogenic environmental changes on the biogeochemical cycle of silicon," explained Lopez.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. Sapriel et al. Genome-Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters. PLoS ONE, 2009; 4 (10): e7458 DOI: 10.1371/journal.pone.0007458

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "When glass develops into a shell: New findings in diatoms." ScienceDaily. ScienceDaily, 18 November 2009. <www.sciencedaily.com/releases/2009/10/091029151619.htm>.
CNRS (Délégation Paris Michel-Ange). (2009, November 18). When glass develops into a shell: New findings in diatoms. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2009/10/091029151619.htm
CNRS (Délégation Paris Michel-Ange). "When glass develops into a shell: New findings in diatoms." ScienceDaily. www.sciencedaily.com/releases/2009/10/091029151619.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

The Toronto Star (Jan. 27, 2015) — Ancient techniques of growing greens with fish and water are well ahead of Toronto bylaws. Video provided by The Toronto Star
Powered by NewsLook.com
How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) — Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) — It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins