Featured Research

from universities, journals, and other organizations

Deep-sea Ecosystems Affected By Climate Change

Date:
November 3, 2009
Source:
Monterey Bay Aquarium Research Institute
Summary:
Deep-sea ecosystems occupying 60 percent of the Earth's surface could be vulnerable to the effects of global warming, warn scientists.

A small grenadier fish swims over the seafloor at Station M. Between 1989 and 2004, the number of grenadier at Station M doubled.
Credit: Copyright 2007 MBARI

The vast muddy expanses of the abyssal plains occupy about 60 percent of the Earth's surface and are important in global carbon cycling. Based on long-term studies of two such areas, a new paper in the Proceedings of the National Academy of Sciences (PNAS) shows that animal communities on the abyssal seafloor are affected in a variety of ways by climate change.

Historically, many people, including marine scientists, have considered the abyssal plains, more than 2,000 meters below the sea surface, to be relatively isolated and stable ecosystems. However, according to Ken Smith, a marine ecologist at the Monterey Bay Aquarium Research Institute (MBARI) and lead author of the recent PNAS article, changes in the Earth's climate can cause unexpectedly large changes in deep-sea ecosystems. Based on 18 years of studies, Smith and his coauthors show that such ecosystem changes occur over short time scales of weeks to months, as well as over longer periods of years to decades.

The recent paper covers two time-series studies -- one at "Station M," about 220 kilometers off the Central California coast, and a second on the Porcupine Abyssal Plain, several hundred kilometers southwest of Ireland. The flat, muddy seafloor at these sites lies between 4,000 and 5,000 meters beneath the ocean surface.

In this cold, dark environment, very little food is available. What food there is takes the form of bits of organic debris drifting down from the sunlit surface waters, thousands of meters above. During its long descent, this organic matter may be eaten, excreted, and decomposed, drastically reducing its nutritive value. It is estimated that less than five percent of the organic matter produced at the surface reaches the abyssal plains.

Research by Smith and his coauthors has shown that the amount of food reaching the deep sea varies dramatically over time. For example, at the Porcupine Abyssal Plain, the amount of organic material sinking from above can vary by almost an order of magnitude from one year to another.

Such variations in food supply have several causes. On a seasonal basis, algal blooms near the sea surface send pulses of organic material to the deep seafloor. Other factors may also come into play, including how much of the algae is eaten by marine animals, and how the material is moved by ocean currents.

The authors point out that global climate change could affect the food supply to the deep sea in many ways. Some relevant ocean processes that may be affected by climate change include wind-driven upwelling, the depth of mixing of the surface waters, and the delivery of nutrients to surface waters via dust storms. Climate-driven changes in these processes are likely to lead to altered year-to-year variation in the amount of organic material reaching the seafloor.

As one example of ongoing changes in deep-sea ecosystems, the authors point to the fact that one of the most important groups of fish on the deep seafloor, the grenadiers, doubled in abundance between 1989 and 2004 at Station M. They speculate that change may be linked to a combination of climate change and commercial fishing.

In another example, some previously common species of sea cucumbers at Station M virtually disappeared after 1998, while others became much more abundant. These changes were tied to a significant El Niño event in 1997-98. Similar dramatic year-to-year changes were observed at Porcupine Abyssal Plain, where they were linked to changes in both the quantity and type of food reaching the seafloor.

Based on their observations, the authors conclude that long-term climate change is likely to influence both deep-sea communities and the chemistry of their environment. According to Smith, "Essentially, deep-sea communities are coupled to surface production. Global change could alter the functioning of these ecosystems and the way carbon is cycled in the ocean."

Changes in deep-sea carbon cycling are not considered in most climate models, an oversight that the authors believe should be corrected. In order to obtain the information needed to include seafloor-community changes in global climate models, the authors suggest that long-term, automated systems must be developed for monitoring the deep sea.

Smith and his colleagues point out that deep-sea ecosystems are prime targets for monitoring using cabled ocean observatories, new seafloor moorings, and robots, which can provide continuous data to capture both long-term and short-term changes in seafloor conditions. As coauthor Henry Ruhl put it, "What we need is to move beyond fragmented research programs and transition to a comprehensive global effort to monitor deep-sea ecosystems."

The research at Station M was sponsored by grants from the National Science Foundation and the David and Lucile Packard Foundation. Research at the Porcupine Abyssal Plain Sustained Observatory site was supported by the European Union and the Natural Environment Research Council of the United Kingdom.


Story Source:

The above story is based on materials provided by Monterey Bay Aquarium Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Smith, K. L. Jr et al. Climate, carbon cycling and deep-ocean ecosystems. Proceedings of the National Academy of Sciences, November 2009

Cite This Page:

Monterey Bay Aquarium Research Institute. "Deep-sea Ecosystems Affected By Climate Change." ScienceDaily. ScienceDaily, 3 November 2009. <www.sciencedaily.com/releases/2009/11/091102171559.htm>.
Monterey Bay Aquarium Research Institute. (2009, November 3). Deep-sea Ecosystems Affected By Climate Change. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2009/11/091102171559.htm
Monterey Bay Aquarium Research Institute. "Deep-sea Ecosystems Affected By Climate Change." ScienceDaily. www.sciencedaily.com/releases/2009/11/091102171559.htm (accessed September 18, 2014).

Share This



More Plants & Animals News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chimp Violence Study Renews Debate On Why They Kill

Chimp Violence Study Renews Debate On Why They Kill

Newsy (Sep. 17, 2014) — The study weighs in on a debate over whether chimps are naturally violent or become that way due to human interference in the environment. Video provided by Newsy
Powered by NewsLook.com
Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) — The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) — Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) — Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins