Featured Research

from universities, journals, and other organizations

Possible Help In Fight Against Muscle-wasting Disease

Date:
November 12, 2009
Source:
University of Oregon
Summary:
A compound already used to treat pneumonia could become a new therapy for an inherited muscular wasting disease. Researchers report that pentamidine might be adapted to counter genetic splicing defects in RNA that lead to type 1 myotonic dystrophy.

A compound already used to treat pneumonia could become a new therapy for an inherited muscular wasting disease, according to researchers at the University of Oregon and the University of Rochester School of Medicine and Dentistry in New York.

Related Articles


The five-member team reports that pentamidine, when tested in genetically altered mice, counters genetic splicing defects in RNA that lead to type 1 myotonic dystrophy -- one of nine types of muscular dystrophy -- also known as DM1 and Steinart's disease.

The compound was among 26 tested in the UO lab of chemist J. Andrew Berglund. Pentamidine carries approval of the U.S. Food and Drug Administration for treating a severe type of pneumonia in people with weakened immune systems, as well as leishmaniasis, sleeping sickness and some yeast infections. However, levels used successfully in the experiments would be toxic in humans, Berglund said.

With modifications, he added, pentamidine could be adapted to reverse RNA splicing defects that drive type 1 myotonic dystrophy. "The fact that a very small library of compounds yielded a molecule capable of reversing the splicing defects associated with DM1 in both cell and mouse DM1 models suggests that a small molecule strategy could lead to a drug for this disease," he said.

The experiments -- done by former UO doctoral student M. Bryan Warf and Catherine M. Matthys, who has since graduated from the UO, and Rochester's postdoctoral researcher Masayuki Nakamori -- identified pentamidine and neomycin B as compounds that worked against abnormal genetic instructions. Pentamidine, however, was found to be the most effective in the mice. Berglund, a member of the UO Institute of Molecular Biology, and Dr. Charles A. Thornton, a neurologist at Rochester, were co-authors of the study.

The research -- supported primarily by grants from the National Institutes of Health and the Muscular Dystrophy Association -- was published in the Nov. 3 issue of the journal Proceedings of the National Academy of Sciences. In a separate commentary in PNAS, Thomas A. Cooper of the Baylor College of Medicine in Houston hailed the findings, noting that the compound is the first to show such promise of reversing splicing defects. Cooper also noted that such a therapeutic approach is attractive because of the potential benefits to multiple organs affected by the disease.

DM1 is caused by an expanded section of DNA in a gene on chromosome 19. The expanded DNA results in synthesis of longer-than-normal strands of RNA sequences, or repeats, of the chemicals cytosine, uracil and guanine. These abnormal pieces get trapped in the nuclei of muscle fibers, and protein molecules called MBNL in each nucleus become stuck to the CUG repeats. This leads to errors in the splicing process in which important proteins are made incorrectly or not at all. In turn, disruptions in muscle fibers cascades into changes in ion channels that impacts the ability of muscles to relax after use.

Researchers found that pentamidine disrupted the complexes formed by the expanded repeats and the MBNL protein that becomes stuck to them, allowing the protein to return to its proper location in the cell. The compound also inhibited interactions of MBNL with the cytosine-uracil-guanine repeats and partially rescued two splicing errors in the mice.

Pentamidine has not been yet tested in people with DM1, Berglund cautioned, but its FDA approval for other uses is important.

"Although pentamidine is not ready for use as a therapy for DM1, this work does demonstrate that a small molecule strategy is a viable approach to this disease," Berglund said. "Almost all human diseases are currently treated with small molecules. Pentamidine is an exciting lead compound because it is relatively easy to chemically modify, and hopefully one of these modified compounds could lead to a safe, long-term treatment for DM1 in the future."

The University of Rochester's medical school maintains the National Registry of FSHD and MMD Patients and Family Members. The registry is designed to help people with myotonic dystrophy or facioscapulohumeral muscular dystrophy participate in research on their disease and help investigators connect with them.


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Cite This Page:

University of Oregon. "Possible Help In Fight Against Muscle-wasting Disease." ScienceDaily. ScienceDaily, 12 November 2009. <www.sciencedaily.com/releases/2009/11/091106145406.htm>.
University of Oregon. (2009, November 12). Possible Help In Fight Against Muscle-wasting Disease. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2009/11/091106145406.htm
University of Oregon. "Possible Help In Fight Against Muscle-wasting Disease." ScienceDaily. www.sciencedaily.com/releases/2009/11/091106145406.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins