Featured Research

from universities, journals, and other organizations

Ancient high-altitude trees grow faster as temperatures rise

Date:
November 17, 2009
Source:
University of Arizona
Summary:
Increasing temperatures at high altitudes are fueling the post-1950 growth spurt seen in bristlecone pines, the world's oldest trees, according to new research. The pines near treeline have wider annual growth rings for the period from 1951 to 2000 than for the previous 3,700 years. Regional temperatures, particularly at high elevations, have increased during the same 50-year time period. The finding is another example of changes in high-elevation ecosystems that are linked to warming temperatures.

This is a dead standing Great Basin bristlecone pine, Pinus longaeva, on Sheep Mountain in the White Mountains of California.
Credit: Copyright 2002 Malcolm K. Hughes.

Increasing temperatures at high altitudes are fueling the post-1950 growth spurt seen in bristlecone pines, the world's oldest trees, according to new research.

Related Articles


Pines close to treeline have wider annual growth rings for the period from 1951 to 2000 than for the previous 3,700 years, reports a University of Arizona-led research team. Regional temperatures have increased, particularly at high elevations, during the same 50-year time period.

"We're showing this increased growth rate at treeline in a number of locations," said Matthew W. Salzer, a research associate at UA's Laboratory of Tree-Ring Research. "It's unique in several millennia, and it's related specifically to treeline."

Bristlecone pines live for thousands of years on dry, windswept, high-elevation mountain slopes in the western U.S. The scientists collected and analyzed tree rings from Great Basin bristlecone pines located in three mountain ranges in eastern California and Nevada that are separated by hundreds of miles.

Only trees growing within about 500 feet (150 meters) of treeline showed the surge in growth. In general, those trees were at or above about 11,000 feet (3,300 meters) in elevation.

"You can come downslope less than 200 vertical meters and sample the same species of tree, and it won't show the same wide band of growth," Salzer said.

Growth at the pines' upper elevational range is limited by cold temperatures. At the lower elevations, growth of the trees is limited by moisture more than temperature, Salzer said.

Co-author Malcolm K. Hughes said, "Something very unusual is happening at high elevations, and this is one more piece of evidence for that." One other example, he said, was the accelerated melting of small glaciers at high altitudes.

"There is increasingly rapid warming in western North America," said Hughes, a UA Regents' Professor of dendrochronology. "The higher you go, the faster it's warming. We think our finding may be part of that whole phenomenon."

Salzer, Hughes and their co-authors Andrew G. Bunn of Western Washington University in Bellingham and Kurt F. Kipfmueller of the University of Minnesota in Minneapolis will publish their paper in an upcoming issue of the Proceedings of the National Academy of Sciences. The National Science Foundation funded the research.

Individual Great Basin bristlecone pines, Pinus longaeva, are the longest-living organisms known. The trees live at an elevation range of approximately 8,200 to 11,400 feet (about 2,500 to 3,500 meters). The oldest living bristlecone, almost 5,000 years old, is in California's White Mountains.

The trees' longevity coupled with the excellent preservation of trunks from even older dead trees has allowed some scientists to reconstruct regional climate 8,000 years into the past using tree-ring records from bristlecone pines.

The recent rapid growth of three species of pines at elevations close to treeline had been noticed more than 25 years ago by previous researchers from UA's Laboratory of Tree-Ring Research. The sudden growth surge was puzzling in trees hundreds to thousands of years old, well past their adolescence.

"It means there has been some environmental change that affected the trees' ability to make wood," Salzer said. "The place they were living wasn't as limiting to their growth anymore."

Salzer and his colleagues wanted to study trees whose growth was strongly affected by temperature.

"Where do you go to look for trees where ring width is related to temperature? You look for trees in high mountain ranges, where the mountain continues up and the trees don't follow," Salzer said. "As you go up, the main thing that's changing in these places is temperature."

He and his colleagues chose to extend the previous research efforts. The scientists used the previous researchers' data and also took new bristlecone pine cores to increase the number of samples available for analysis.

The team analyzed the average and median width of tree rings for 50-year blocks of time, starting with the latter half of the 20th century, the years 1951 to 2000, and going backward in time to 2650 B.C. The analysis spans more than 4,600 years.

To see how the annual growth rings changed with temperature, the team used a new method of mapping climate data called PRISM that was unavailable to researchers 25 years ago.

PRISM combines weather records and knowledge of how topography affects weather and climate to provide state-of-the-art climate information going back 100 years for specific locations. PRISM stands for "Parameter-elevation Regressions on Independent Slopes Model."

The tree-ring researchers found that the chronological timing of the wider tree rings correlates with increasing temperatures from the PRISM climate map.

Hughes said that increasing temperatures high in the mountains could have significant effects elsewhere. In many areas of the western U.S., mountains are a key source of water for farms and urban areas at lower elevations.

"If the snow melts earlier, the mountains won't be able to hold onto water for as long," Hughes said. "They won't be as effective as water towers for us."

The same pattern of high-elevation growth increases has also been observed in Rocky Mountain bristlecone pines, including ones in Arizona's San Francisco Peaks, Salzer said. He plans to expand the research to investigate high-altitude trees at additional locations.


Story Source:

The above story is based on materials provided by University of Arizona. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthew W. Salzer, Malcolm K. Hughes, Andrew G. Bunn, and Kurt F. Kipfmueller. Recent Unprecedented Tree-ring Growth in Bristlecone Pine at the Highest Elevations and Possible Causes. Proceedings of the National Academy of Sciences, 2009; DOI: 10.1073/pnas.0903029106

Cite This Page:

University of Arizona. "Ancient high-altitude trees grow faster as temperatures rise." ScienceDaily. ScienceDaily, 17 November 2009. <www.sciencedaily.com/releases/2009/11/091116163206.htm>.
University of Arizona. (2009, November 17). Ancient high-altitude trees grow faster as temperatures rise. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2009/11/091116163206.htm
University of Arizona. "Ancient high-altitude trees grow faster as temperatures rise." ScienceDaily. www.sciencedaily.com/releases/2009/11/091116163206.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins