Featured Research

from universities, journals, and other organizations

Rich ore deposits linked to ancient atmosphere

Date:
November 20, 2009
Source:
Carnegie Institution
Summary:
Much of our planet's mineral wealth was deposited billions of years ago when Earth's chemical cycles were different from today's. Using geochemical clues from rocks nearly 3 billion years old, a group of scientists have made the surprising discovery that the creation of economically important nickel ore deposits was linked to sulfur in the ancient oxygen-poor atmosphere.

Volcano eruption on Reunion Island in the Indian Ocean. To help produce ancient ore deposits, sulfur atoms made a complicated journey from volcanic eruptions, to the atmosphere, to seawater, to hot springs on the ocean floor, and finally to molten, ore-producing magmas.
Credit: iStockphoto

Much of our planet's mineral wealth was deposited billions of years ago when Earth's chemical cycles were different from today's. Using geochemical clues from rocks nearly 3 billion years old, a group of scientists including Andrey Bekker and Doug Rumble from the Carnegie Institution have made the surprising discovery that the creation of economically important nickel ore deposits was linked to sulfur in the ancient oxygen-poor atmosphere.

Related Articles


These ancient ores -- specifically iron-nickel sulfide deposits -- yield 10% of the world's annual nickel production. They formed for the most part between two and three billion years ago when hot magmas erupted on the ocean floor. Yet scientists have puzzled over the origin of the rich deposits. The ore minerals require sulfur to form, but neither seawater nor the magmas hosting the ores were thought to be rich enough in sulfur for this to happen.

"These nickel deposits have sulfur in them arising from an atmospheric cycle in ancient times. The isotopic signal is of an anoxic atmosphere," says Rumble of Carnegie's Geophysical Laboratory, a co-author of the paper appearing in the November 20 issue of Science.

Rumble, with lead author Andrey Bekker (formerly Carnegie Fellow and now at the University of Manitoba), and four other colleagues used advanced geochemical techniques to analyze rock samples from major ore deposits in Australia and Canada. They found that to help produce the ancient deposits, sulfur atoms made a complicated journey from volcanic eruptions, to the atmosphere, to seawater, to hot springs on the ocean floor, and finally to molten, ore-producing magmas.

The key evidence came from a form of sulfur known as sulfur-33, an isotope in which atoms contain one more neutron than "normal" sulfur (sulfur-32). Both isotopes act the same in most chemical reactions, but reactions in the atmosphere in which sulfur dioxide gas molecules are split by ultraviolet light (UV) rays cause the isotopes to be sorted or "fractionated" into different reaction products, creating isotopic anomalies.

"If there is too much oxygen in the atmosphere then not enough UV gets through and these reactions can't happen," says Rumble. "So if you find these sulfur isotope anomalies in rocks of a certain age, you have information about the oxygen level in the atmosphere."

By linking the rich nickel ores with the ancient atmosphere, the anomalies in the rock samples also answer the long-standing question regarding the source of the sulfur in the ore minerals. Knowing this will help geologists track down new ore deposits, says Rumble, because the presence of sulfur and other chemical factors determine whether or not a deposit will form.

"Ore deposits are a tiny fraction of a percent of the Earth's surface, yet economically they are incredibly important. Modern society cannot exist without specialized metals and alloys," he says. "But it's all a matter of local geological circumstance whether you have a bonanza -- or a bust."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Rich ore deposits linked to ancient atmosphere." ScienceDaily. ScienceDaily, 20 November 2009. <www.sciencedaily.com/releases/2009/11/091119193640.htm>.
Carnegie Institution. (2009, November 20). Rich ore deposits linked to ancient atmosphere. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/11/091119193640.htm
Carnegie Institution. "Rich ore deposits linked to ancient atmosphere." ScienceDaily. www.sciencedaily.com/releases/2009/11/091119193640.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Domestication Might've Been Bad For Horses

Domestication Might've Been Bad For Horses

Newsy (Dec. 16, 2014) A group of scientists looked at the genetics behind the domestication of the horse and showed how human manipulation changed horses' DNA. Video provided by Newsy
Powered by NewsLook.com
Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

AFP (Dec. 16, 2014) A collection of rare manuscripts by composers Mozart, Beethoven, Shubert and Bizet are due to go on sale at auction on December 17. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Old Ship Records to Shed Light on Arctic Ice Loss

Old Ship Records to Shed Light on Arctic Ice Loss

Reuters - Innovations Video Online (Dec. 15, 2014) Researchers are looking to the past to gain a clearer picture of what the future holds for ice in the Arctic. A project to analyse and digitize ship logs dating back to the 1850's aims to lengthen the timeline of recorded ice data. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins