Featured Research

from universities, journals, and other organizations

Symbiosis: Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants

Date:
December 2, 2009
Source:
Field Museum
Summary:
Multiple independent associations between rhizobiales and herbivorous ants provides strong evidence that symbiotic bacteria have facilitated the evolution of nectar and exudate-feeding life histories in ants and their radiation into otherwise inhospitable rainforest canopy habitats, providing a novel instance of innovation through symbiosis.

Multiple independent associations between rhizobiales and herbivorous ants provides strong evidence that symbiotic bacteria have facilitated the evolution of nectar and exudate-feeding life histories in ants and their radiation into otherwise inhospitable rainforest canopy habitats, providing a novel instance of innovation through symbiosis.

Related Articles


Broadly speaking, ants have two different feeding strategies. A large proportion of all species are "carnivorous," meaning that they are generalist predators feeding on other small animals or scavenging on their remains. Some, however, are "herbivorous." This is not to say that they only eat plants; rather, the bulk of their diets consist of plant-derived matter. For example, some forage on sticky fluids produced by plants to attract ants, called extra-floral nectar; others feed on the processed plant sap excreted by plant-sucking insects such as scale insects and aphids. Herbivorous ants are likely to be a highly under-estimated component of the global fauna as there are many tropical forest canopy specialists among them, and the forest canopy remains to this day surprisingly unexplored.

It has long been a mystery how herbivorous ant species gain all the nutrients they need. Their plant-derived diet comprises essentially water and sugars; it is deficient in protein and/or the nitrogen-based compounds that are the building blocks of proteins. Carnivorous ants face few such nutritional difficulties, as their diet tends to contain all the chemical compounds they require. Most ants are not renowned for being associated with microbes -- the most famous suite of on-board microbial symbionts in insects is found in termites, whose guts harbor bacteria that facilitate the digestion of the woody material that constitutes the termite diet -- but it has been recently hypothesized that herbivorous ants might host a set of indigenous symbionts that provide the missing components of the herbivorous ants' diets.

We tested this hypothesis by using molecular genetic techniques to look for the presence of microbes in 283 species of ants from 18 of the 21 ant subfamilies. We were able to classify each ant species as carnivorous or herbivorous based on the amount of heavy and light nitrogen (15N/14N) within the ants' tissues. By uniting the two datasets, we were then able to determine whether microbial symbionts were particularly associated with herbivorous ants.

The short answer is, yes. Bacteria from an order called Rhizobiales tend to be present in the guts of herbivorous ants but not carnivorous ones. Remarkably, this group of bacteria is well known for containing microbes that associate with leguminous plants and are capable of nitrogen fixation -- converting atmospheric nitrogen into compounds that are biologically accessible and useful. So herbivorous ants likely make up for their dietary deficiencies by hosting an on-board squadron of bacteria in their guts capable of enriching nitrogen through fixation or alternative routes.

To determine whether the observed trends of gut symbionts in herbivorous ants was confounded in some way by the ants' history, we analyzed the distribution of herbivory and gut symbionts on the ant family tree -- or phylogeny -- and assessed how often these had evolved. A very striking pattern emerged: herbivory has arisen multiple times in the ants, and at least five of these unrelated herbivorous lineages associate symbiotically with Rhizobiales bacteria. It, thus, seems likely that the acquisition of nutritional gut bacteria has enabled the evolution and maintenance of herbivorous, nitrogen-poor diets across the ants.

We are still just beginning to gauge the centrality of microbes in ecology, especially in systems like this one where their role has been under-appreciated. This is a good example of how microbes once again provide the missing piece of the evolutionary jigsaw puzzle.

This work was carried out in the Department of Organismic and Evolutionary Biology at Harvard University, the Department of Biology at Drexel University, and the Department of Zoology at Field Museum of Natural History. Research was supported by grants from the Baker Fund, the Tides Foundation, Harvard University Center for the Environment, the Green Memorial Fund of Harvard University, the Putnam Expeditionary Fund of the Museum of Comparative Zoology, and the National Science Foundation.


Story Source:

The above story is based on materials provided by Field Museum. Note: Materials may be edited for content and length.


Cite This Page:

Field Museum. "Symbiosis: Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants." ScienceDaily. ScienceDaily, 2 December 2009. <www.sciencedaily.com/releases/2009/12/091201132431.htm>.
Field Museum. (2009, December 2). Symbiosis: Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/12/091201132431.htm
Field Museum. "Symbiosis: Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants." ScienceDaily. www.sciencedaily.com/releases/2009/12/091201132431.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins