Science News
from research organizations

New mouse could help understand how some lung cancer cells evade drug treatment

Date:
December 10, 2009
Source:
The Company of Biologists
Summary:
A new study describes the development of drug resistance in mice with lung cancer. The lung tumors in mice result from changes similar to those seen in human patients. Also like humans, these tumors initially respond to drug treatment but eventually become resistant to therapy. Studying lung cancer cells in this model should provide insight into the mechanisms that make lung cancer cells resistant to current treatment methods and uncover new therapeutic targets.
Share:
       
FULL STORY

Lung cancer is the leading cause of cancer mortality worldwide and lung adenocarcinoma is the most common type. Many cases of lung adenocarcinoma are attributed to a mutation in a gene for the epidermal growth factor receptor (EGFR). Lung cancer with changes in EGFR is initially treatable with a family of chemotherapeutic agents called tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. However, patients often develop resistance to these drugs through the acquisition of additional changes or secondary mutations that allow cancer cells to evade treatment.

Some secondary mutations to the EGFR gene that allow lung cancer cells to survive in the presence of current chemotherapy are known. These secondary changes are now the focus of targeted efforts to create drugs to specifically interfere with the mutated form of the protein. Unfortunately, in 40% of the cases in which patients become resistant to therapy, the molecular events that confer this resistance are not known. Without knowing the changes that sustain the survival of these cells it remains impossible to specifically and effectively target them with anti-cancer drugs.

Scientists now describe a mouse model of lung cancer that develops resistance to TKI drugs in at least some of the same ways that humans do. Lung cancer occurs in these mice due to a mutation in EGFR that is the same as the mutation that underlies many human lung adenocarcinomas. Some of the defined secondary changes to EGFR, which are known to confer drug resistance in humans, also occur in these mice. But most of these drug resistant mice bear tumors that do not contain known mutations. This important similarity to the human situation suggests that this mouse model might help identify the currently unknown mutations that make lung cancer cells resistant to therapy.

Many techniques are now available to unravel the genetic changes that occur in cancer cells. Since these mice recapitulate many of the known mutations that characterize human lung cancer, the hope is that their cells can be screened to identify the currently unknown mutations that promote drug resistance in lung cancer cells. This provides a model to uncover the molecular events responsible for the 40% of patients that become resistant to TKI therapy due to unknown causes. Once novel mechanisms of resistance are identified, these mice might also become valuable preclinical systems to evaluate the efficacy of therapeutics developed to combat drug-resistant disease.


Story Source:

The above post is reprinted from materials provided by The Company of Biologists. Note: Materials may be edited for content and length.


Journal Reference:

  1. Katerina Politi, Pang-Dian Fan, Ronglai Shen, Maureen Zakowski and Harold Varmus. Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma. Disease Models & Mechanisms, January/February 2010

Cite This Page:

The Company of Biologists. "New mouse could help understand how some lung cancer cells evade drug treatment." ScienceDaily. ScienceDaily, 10 December 2009. <www.sciencedaily.com/releases/2009/12/091209093113.htm>.
The Company of Biologists. (2009, December 10). New mouse could help understand how some lung cancer cells evade drug treatment. ScienceDaily. Retrieved July 3, 2015 from www.sciencedaily.com/releases/2009/12/091209093113.htm
The Company of Biologists. "New mouse could help understand how some lung cancer cells evade drug treatment." ScienceDaily. www.sciencedaily.com/releases/2009/12/091209093113.htm (accessed July 3, 2015).

Share This Page: