Featured Research

from universities, journals, and other organizations

From fruit fly wings to heart failure: Notch is key signalling pathway for heart development and healing

Date:
December 15, 2009
Source:
European Molecular Biology Laboratory
Summary:
Scientists are the first to prove that the Notch signaling pathway targets heart muscle cells and thus reveal its crucial role in heart development and repair.

These microscopy images demonstrate the effects of Notch signalling on the hearts of newborn mice (top) and of adult mice after a heart attack (bottom). In a normal neonatal heart (top left), the two major heart chambers (ventricles) are clearly separated by tissue (septum). But when Notch signalling was inactivated in an embryo's heart muscle cells, the septum between the ventricles of the newborn mouse's heart was incomplete (asterisk). The same defect commonly occurs in humans with congenital heart disease, often leading to circulatory distress. In the images of adult hearts (bottom), healthy tissue is shown in red and damaged tissue in blue. Normally (bottom left), a heart attack causes extensive tissue damage to the left ventricle (right-hand cavity), but mice in which Notch was re-activated after the heart attack had reduced tissue damage (bottom right) and improved cardiac function.
Credit: EMBL

Almost a century after it was discovered in fruit flies with notches in their wings, the Notch signalling pathway may come to play an important role in the recovery from heart attacks. In a study published today in Circulation Research, scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, are the first to prove that this signalling pathway targets heart muscle cells and thus reveal its crucial role in heart development and repair.

Related Articles


The Notch pathway is a molecular mechanism through which cells communicate with each other. Scientists in Nadia Rosenthal's group at EMBL used sophisticated genetic mouse models to uncover critical roles for this pathway in heart muscle cells. When they inactivated Notch specifically in the heart muscle precursor cells of early mouse embryos, the scientists discovered that the mice developed heart defects. Curiously, increasing Notch signalling in the heart muscle cells of older embryos had the same detrimental effect, uncovering different requirements for Notch as development proceeds.

"The cardiac malformations we observed are characteristic of Alagille syndrome, a human congenital disorder," said first author Paschalis Kratsios,. "Therefore, our findings could help to explain the cardiac symptoms associated with Alagille syndrome and related forms of congenital heart disease."

Intriguingly, the scientists were able to improve the cardiac function and survival rate of adult mice that had suffered heart attacks by re-activating Notch, suggesting new therapeutic approaches to help the heart recover from damage.

"Overall, these results highlight the importance of timing and context in biological communication mechanisms" Nadia Rosenthal concludes: "Our findings also lend support to the notion that, in certain situations, redeployment of embryonic signalling pathways could prove beneficial for tissue regeneration in the adult."


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kratsios, P., Catela, C., Salimova, E., Huth, M., Berno, V., Rosenthal, N., Mourkioti, F. Distinct roles for cell-autonomous Notch signalling in cardiomyocytes of the embryonic and adult heart. Circulation Research, Published online 10th December 2009

Cite This Page:

European Molecular Biology Laboratory. "From fruit fly wings to heart failure: Notch is key signalling pathway for heart development and healing." ScienceDaily. ScienceDaily, 15 December 2009. <www.sciencedaily.com/releases/2009/12/091210092003.htm>.
European Molecular Biology Laboratory. (2009, December 15). From fruit fly wings to heart failure: Notch is key signalling pathway for heart development and healing. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2009/12/091210092003.htm
European Molecular Biology Laboratory. "From fruit fly wings to heart failure: Notch is key signalling pathway for heart development and healing." ScienceDaily. www.sciencedaily.com/releases/2009/12/091210092003.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins