Featured Research

from universities, journals, and other organizations

'Rock-breathing' bacteria could generate electricity and clean up oil spills

Date:
December 15, 2009
Source:
University of East Anglia
Summary:
A new discovery could contribute to the development of systems that use domestic or agricultural waste to generate clean electricity.

A discovery by scientists at the University of East Anglia could contribute to the development of systems that use domestic or agricultural waste to generate clean electricity.
Credit: Image courtesy of University of East Anglia

A discovery by scientists at the University of East Anglia (UEA) could contribute to the development of systems that use domestic or agricultural waste to generate clean electricity.

Related Articles


Recently published by the scientific journal, Proceedings of the National Academy of Sciences (PNAS), the researchers have demonstrated for the first time the mechanism by which some bacteria survive by 'breathing rocks'.

The findings could be applied to help in the development of new microbe-based technologies such as fuel cells, or 'bio-batteries', powered by animal or human waste, and agents to clean up areas polluted by oil or uranium.

"This is an exciting advance in our understanding of bacterial processes in the Earth's sub-surfaces," said Prof David Richardson, of UEA's School of Biological Sciences, who is leading the project.

"It will also have important biotechnological impacts. There is potential for these rock-breathing bacteria to be used to clean-up environments contaminated with toxic organic pollutants such as oil or radioactive metals such as uranium. Use of these bacteria in microbial fuel-cells powered by sewerage or cow manure is also being explored."

The vast proportion of the world's habitable environments is populated by micro-organisms which, unlike humans, can survive without oxygen. Some of these micro-organisms are bacteria living deep in the Earth's subsurface and surviving by 'breathing rocks' -- especially minerals of iron.

Iron respiration is one of the most common respiratory processes in oxygen-free habitats and therefore has wide environmental significance.

Prof Richardson said: "We discovered that the bacteria can construct tiny biological wires that extend through the cell walls and allow the organism to directly contact, and conduct electrons to, a mineral. This means that the bacteria can release electrical charge from inside the cell into the mineral, much like the earth wire on a household plug."


Story Source:

The above story is based on materials provided by University of East Anglia. Note: Materials may be edited for content and length.


Journal Reference:

  1. R Hartshorne et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proceedings of the National Academy of Sciences, Online December 14, 2009

Cite This Page:

University of East Anglia. "'Rock-breathing' bacteria could generate electricity and clean up oil spills." ScienceDaily. ScienceDaily, 15 December 2009. <www.sciencedaily.com/releases/2009/12/091214151931.htm>.
University of East Anglia. (2009, December 15). 'Rock-breathing' bacteria could generate electricity and clean up oil spills. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/12/091214151931.htm
University of East Anglia. "'Rock-breathing' bacteria could generate electricity and clean up oil spills." ScienceDaily. www.sciencedaily.com/releases/2009/12/091214151931.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins