Featured Research

from universities, journals, and other organizations

Water droplets shape graphene nanostructures

Date:
December 18, 2009
Source:
University of Illinois at Chicago
Summary:
A team of chemists reports the ability to bend and reshape graphene, opening up the possibility of forming new and novel devices in the nanoscale. They use an everyday household ingredient to perform the work -- a droplet of water.

Graphene -- A single-atom-thick sheet of carbon, like those seen in pencil marks -- offers great potential for new types of nanoscale devices, if a good way can be found to mold the material into desired shapes.

Chemists at the University of Illinois at Chicago say it's possible, reporting that graphene can become quite pliable using only a nanodroplet of water to do the job.

"Up until now, it wasn't thought we could controllably fold these structures," said Petr Král, assistant professor of chemistry at UIC. "But now we know how to shape graphene by using weak forces between nanodroplets carefully positioned on graphene sheets."

Král and two of his graduate students described the process in a recent article in Nano Letters, which is highlighted in Nature's "News and Views" section Dec. 17.

Engineers already cut graphene into narrow ribbons and other shapes, expanding the set of carboneous systems such as fullerenes, carbon nanotubes and nano-diamonds. Using computer simulations, Král showed that weak molecular interactions called van der Waals forces between water nanodroplets and graphene can shape it into a wide variety of forms, without the water and graphene chemically binding.

"Depending on the size of the water droplet and the shape and size of graphene flake used, we can fold it in different shapes for various applications," said Král. "It's similar to the way proteins are folded in biological cells with the help of chaperone proteins."

Král and his students discovered they could use water droplets to roll, bend, slide and shape graphene into different complex structures such as capsules, sandwiches, knots and rings -- all potential building blocks of nanodevices with unique mechanical, electrical or optical properties. By using special techniques like atomic force microscopy and carefully guided microscopic needles, water droplets and other materials can be carefully positioned on graphene to shape it into desired forms, he says.

Král's laboratory is studying potential uses of nanoscale graphene, such as ways to coat it with phospholipid molecules that would allow it to become part of biological cell membranes where it might perform specific functions. His lab is also designing graphene sheet nanoscale pores that allow the building of novel ion and molecular separation membranes for use in desalination and other applications.

While the materials he works with are inorganic, Král sees a growing trend to developing hybrid multifunctional systems that combine inorganic nanostructures with biological cellular systems.

"We're trying to detect signals from the biological world or pass signals to the biological world," he said. "In the future, perhaps proteins will evolve to interact with inorganic systems. It's a way of evolution to form a new interface, or hybrid system, working together on novel functions."

The Nano Letters article was co-authored by Niladri Patra, a UIC chemistry doctoral student and first author on the paper, and former UIC doctoral student Boyang Wang, now a post-doctoral fellow at Northwestern University.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Chicago. "Water droplets shape graphene nanostructures." ScienceDaily. ScienceDaily, 18 December 2009. <www.sciencedaily.com/releases/2009/12/091217065721.htm>.
University of Illinois at Chicago. (2009, December 18). Water droplets shape graphene nanostructures. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/12/091217065721.htm
University of Illinois at Chicago. "Water droplets shape graphene nanostructures." ScienceDaily. www.sciencedaily.com/releases/2009/12/091217065721.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins