Featured Research

from universities, journals, and other organizations

Motility mechanism of malaria pathogens explained

Date:
December 23, 2009
Source:
University Hospital Heidelberg
Summary:
How do one-celled parasites move from the salivary gland of a mosquito through a person's skin into red blood cells? What molecular mechanisms form the basis for this very important movement of the protozoa? Researchers observed the initial stage of the malaria parasite that is transmitted by mosquitoes with new microscope techniques.

Left: Malaria parasite (green) on an elastic gel with marker beads in two colors. The marker beads are deflected during the parasite’s movement. Shown here with red arrows are the calculated force vectors (middle) and traction forces (right). The greatest force occurs at the center of the parasite and is indicated in red.
Credit: Department of Infectious Diseases, Heidelberg University Hospital

How do one-celled parasites move from the salivary gland of a mosquito through a person's skin into red blood cells? What molecular mechanisms form the basis for this very important movement of the protozoa? A team of researchers headed by Dr. Friedrich Frischknecht, head of a research group at the Department of Infectious Diseases at Heidelberg University Hospital, observed the initial stage of the malaria parasite that is transmitted by mosquitoes with new microscope techniques.

Related Articles


They discovered that the parasite continually alternates between phases of rapid gliding and phases of firm adhesion to the surface. The interaction of these two processes probably enables the parasite to move rapidly over a long time, which is necessary for successful transmission of the disease. The research was a colaboration within the CellNetworks cluster of excellence and published in the journal Cell Host & Microbe.

The CellNetworks cluster of excellence

Researchers from three different disciplines at the CellNetworks cluster of excellence were involved in the study. This is one of the first studies ever in which modern biophysical methods were used to examine parasites. Leading this study were, in addition to Dr. Friedrich Frischknecht of the Parasitology Department, Professor Dr. Ulrich Schwarz from the Institute of Theoretical Physics and Professor Dr. Joachim Spatz from the Institute of Biophysical Chemistry at the University of Heidelberg.

The goal of the CellNetworks cluster of excellence is to describe and understand complex biological networks. It consists of numerous scientific institutions in the Mannheim/Heidelberg region and was founded at the University of Heidelberg in 2006 as part of the excellence initiative of the Deutsche Forschungsgemeinschaft (German Research Foundation) as one of the first excellence institutions in Germany.

How does the motility mechanism of the malaria parasite function?

Malaria is caused by plasmodia, tiny parasites that enter the human body through the saliva of a mosquito when it bites. They use active movements to enter into the bloodstream and from there to cells of the liver and finally into blood cells. A Plasmodium parasite consists of a single cell that has small motors (myosin) in its inner cell wall that are connected to the outer cell wall by movable elements (actin). Certain protein structures (TRAP, thrombospondin-related anonymous protein) are located there, with which the protozoa can adhere to the surface. The components of this motility mechanism that is essential for the parasite are known to a great extent, but the spatial and temporal dynamics of the individual components are still unclear.

The "stick-slip" method

Under special microscopes, the researchers observed how the sporozoites adhere to several sites on the surface via the TRAP protein and then use the short actin filaments to push their body past these adhesion points. "The parasite can stretch forward while still attaching with its rear end -- thus building up elastic energy. At the moment when the rear adhesion is detached, energy is released and the sporozoite glides forward rapidly," explains Dr. Friedrich Frischknecht. The researchers call this mechanism the "stick-slip" method. The speed of movement is regulated by the formation and turnover of adhesion sites, the existence and dynamics of which have been described for the first time.


Story Source:

The above story is based on materials provided by University Hospital Heidelberg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mόnter et al. Plasmodium Sporozoite Motility Is Modulated by the Turnover of Discrete Adhesion Sites. Cell Host & Microbe, 2009; 6 (6): 551 DOI: 10.1016/j.chom.2009.11.007

Cite This Page:

University Hospital Heidelberg. "Motility mechanism of malaria pathogens explained." ScienceDaily. ScienceDaily, 23 December 2009. <www.sciencedaily.com/releases/2009/12/091223094736.htm>.
University Hospital Heidelberg. (2009, December 23). Motility mechanism of malaria pathogens explained. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/12/091223094736.htm
University Hospital Heidelberg. "Motility mechanism of malaria pathogens explained." ScienceDaily. www.sciencedaily.com/releases/2009/12/091223094736.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins