Featured Research

from universities, journals, and other organizations

Motility mechanism of malaria pathogens explained

Date:
December 23, 2009
Source:
University Hospital Heidelberg
Summary:
How do one-celled parasites move from the salivary gland of a mosquito through a person's skin into red blood cells? What molecular mechanisms form the basis for this very important movement of the protozoa? Researchers observed the initial stage of the malaria parasite that is transmitted by mosquitoes with new microscope techniques.

Left: Malaria parasite (green) on an elastic gel with marker beads in two colors. The marker beads are deflected during the parasite’s movement. Shown here with red arrows are the calculated force vectors (middle) and traction forces (right). The greatest force occurs at the center of the parasite and is indicated in red.
Credit: Department of Infectious Diseases, Heidelberg University Hospital

How do one-celled parasites move from the salivary gland of a mosquito through a person's skin into red blood cells? What molecular mechanisms form the basis for this very important movement of the protozoa? A team of researchers headed by Dr. Friedrich Frischknecht, head of a research group at the Department of Infectious Diseases at Heidelberg University Hospital, observed the initial stage of the malaria parasite that is transmitted by mosquitoes with new microscope techniques.

Related Articles


They discovered that the parasite continually alternates between phases of rapid gliding and phases of firm adhesion to the surface. The interaction of these two processes probably enables the parasite to move rapidly over a long time, which is necessary for successful transmission of the disease. The research was a colaboration within the CellNetworks cluster of excellence and published in the journal Cell Host & Microbe.

The CellNetworks cluster of excellence

Researchers from three different disciplines at the CellNetworks cluster of excellence were involved in the study. This is one of the first studies ever in which modern biophysical methods were used to examine parasites. Leading this study were, in addition to Dr. Friedrich Frischknecht of the Parasitology Department, Professor Dr. Ulrich Schwarz from the Institute of Theoretical Physics and Professor Dr. Joachim Spatz from the Institute of Biophysical Chemistry at the University of Heidelberg.

The goal of the CellNetworks cluster of excellence is to describe and understand complex biological networks. It consists of numerous scientific institutions in the Mannheim/Heidelberg region and was founded at the University of Heidelberg in 2006 as part of the excellence initiative of the Deutsche Forschungsgemeinschaft (German Research Foundation) as one of the first excellence institutions in Germany.

How does the motility mechanism of the malaria parasite function?

Malaria is caused by plasmodia, tiny parasites that enter the human body through the saliva of a mosquito when it bites. They use active movements to enter into the bloodstream and from there to cells of the liver and finally into blood cells. A Plasmodium parasite consists of a single cell that has small motors (myosin) in its inner cell wall that are connected to the outer cell wall by movable elements (actin). Certain protein structures (TRAP, thrombospondin-related anonymous protein) are located there, with which the protozoa can adhere to the surface. The components of this motility mechanism that is essential for the parasite are known to a great extent, but the spatial and temporal dynamics of the individual components are still unclear.

The "stick-slip" method

Under special microscopes, the researchers observed how the sporozoites adhere to several sites on the surface via the TRAP protein and then use the short actin filaments to push their body past these adhesion points. "The parasite can stretch forward while still attaching with its rear end -- thus building up elastic energy. At the moment when the rear adhesion is detached, energy is released and the sporozoite glides forward rapidly," explains Dr. Friedrich Frischknecht. The researchers call this mechanism the "stick-slip" method. The speed of movement is regulated by the formation and turnover of adhesion sites, the existence and dynamics of which have been described for the first time.


Story Source:

The above story is based on materials provided by University Hospital Heidelberg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mόnter et al. Plasmodium Sporozoite Motility Is Modulated by the Turnover of Discrete Adhesion Sites. Cell Host & Microbe, 2009; 6 (6): 551 DOI: 10.1016/j.chom.2009.11.007

Cite This Page:

University Hospital Heidelberg. "Motility mechanism of malaria pathogens explained." ScienceDaily. ScienceDaily, 23 December 2009. <www.sciencedaily.com/releases/2009/12/091223094736.htm>.
University Hospital Heidelberg. (2009, December 23). Motility mechanism of malaria pathogens explained. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2009/12/091223094736.htm
University Hospital Heidelberg. "Motility mechanism of malaria pathogens explained." ScienceDaily. www.sciencedaily.com/releases/2009/12/091223094736.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) — A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Dog-Loving Astronaut Wins Best Photo of 2015

Dog-Loving Astronaut Wins Best Photo of 2015

Buzz60 (Jan. 30, 2015) — Retired astronaut and television host, Leland Melvin, snuck his dogs into the NASA studio so they could be in his official photo. As Mara Montalbano (@maramontalbano) shows us, the secret is out. Video provided by Buzz60
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) — The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Rarest Cat on Planet Caught Attacking Monkeys on Camera

Rarest Cat on Planet Caught Attacking Monkeys on Camera

Buzz60 (Jan. 30, 2015) — An African Golden Cat, the rarest large cat on the planet was recently caught on camera by scientists trying to study monkeys. The cat comes out of nowhere to attack those monkeys. Patrick Jones (@Patrick_E_Jones) has the rest. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins