Featured Research

from universities, journals, and other organizations

Common mechanism underlies many diseases of excitability

Date:
December 30, 2009
Source:
Journal of Clinical Investigation
Summary:
Inherited mutations in voltage-gated sodium channels are associated with many different human diseases, including genetic forms of epilepsy and chronic pain. New research has now determined the functional consequence of three such mutations. These results suggest that there might be a common mechanism underlying diseases caused by mutations in voltage-gated sodium channels.

Inherited mutations in voltage-gated sodium channels (Navs) are associated with many different human diseases, including genetic forms of epilepsy and chronic pain. Theodore Cummins and colleagues, at Indiana University School of Medicine, Indianapolis, have now determined the functional consequence of three such mutations.

Related Articles


The research appears in the Journal of Clinical Investigation.

As noted by Stephen Cannon and Bruce Bean, in an accompanying commentary, these results suggest that there might be a common mechanism for many channelopathies, diseases arising from mutations in ion channel genes such as those analyzed by Cummins and colleagues.

The authors studied the functional consequences of mutations in the human peripheral neuronal sodium channel Nav1.7, the human skeletal muscle sodium channel Nav1.4, and the human heart sodium channel Nav1.5, which are associated with an extreme pain disorder, a muscle condition characterized by slow relaxation of the muscles, and a heart condition and sudden infant death syndrome, respectively. Expression of these mutated proteins in a rat-derived dorsal root ganglion neuronal system led to the conclusion that the mutations all altered opening of the sodium channels such that the channels quickly reopened after an electrical impulse had been fired by the nerve cell causing a resurgent sodium current that triggered a second electrical impulse to be fired rapidly after the first.

These observations are consistent with the diseases all being characterized by excitability, over activity of cells that rely on electrical currents, such as nerve cells, skeletal muscle cells, and heart muscle cells.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal References:

  1. Brian W. Jarecki, Andrew D. Piekarz, James O. Jackson, II and Theodore R. Cummins. Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. Journal of Clinical Investigation, Published December 28, 2009 DOI: 10.1172/JCI40801
  2. Stephen C. Cannon and Bruce P. Bean. Sodium channels gone wild: resurgent current from neuronal and muscle channelopathies. Journal of Clinical Investigation, 2010; 120 (1): 80-83 DOI: 10.1172/JCI41340

Cite This Page:

Journal of Clinical Investigation. "Common mechanism underlies many diseases of excitability." ScienceDaily. ScienceDaily, 30 December 2009. <www.sciencedaily.com/releases/2009/12/091228171457.htm>.
Journal of Clinical Investigation. (2009, December 30). Common mechanism underlies many diseases of excitability. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2009/12/091228171457.htm
Journal of Clinical Investigation. "Common mechanism underlies many diseases of excitability." ScienceDaily. www.sciencedaily.com/releases/2009/12/091228171457.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com
What's Different About This Latest Ebola Vaccine

What's Different About This Latest Ebola Vaccine

Newsy (Mar. 26, 2015) — A whole virus Ebola vaccine has been shown to protect monkeys exposed to the virus. Here&apos;s what&apos;s different about this vaccine. Video provided by Newsy
Powered by NewsLook.com
HIV Outbreak Prompts Public Health Emergency In Indiana

HIV Outbreak Prompts Public Health Emergency In Indiana

Newsy (Mar. 26, 2015) — Indiana Gov. Mike Pence says he will bring additional state resources to help stop the epidemic. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins