Featured Research

from universities, journals, and other organizations

Common mechanism underlies many diseases of excitability

Date:
December 30, 2009
Source:
Journal of Clinical Investigation
Summary:
Inherited mutations in voltage-gated sodium channels are associated with many different human diseases, including genetic forms of epilepsy and chronic pain. New research has now determined the functional consequence of three such mutations. These results suggest that there might be a common mechanism underlying diseases caused by mutations in voltage-gated sodium channels.

Inherited mutations in voltage-gated sodium channels (Navs) are associated with many different human diseases, including genetic forms of epilepsy and chronic pain. Theodore Cummins and colleagues, at Indiana University School of Medicine, Indianapolis, have now determined the functional consequence of three such mutations.

Related Articles


The research appears in the Journal of Clinical Investigation.

As noted by Stephen Cannon and Bruce Bean, in an accompanying commentary, these results suggest that there might be a common mechanism for many channelopathies, diseases arising from mutations in ion channel genes such as those analyzed by Cummins and colleagues.

The authors studied the functional consequences of mutations in the human peripheral neuronal sodium channel Nav1.7, the human skeletal muscle sodium channel Nav1.4, and the human heart sodium channel Nav1.5, which are associated with an extreme pain disorder, a muscle condition characterized by slow relaxation of the muscles, and a heart condition and sudden infant death syndrome, respectively. Expression of these mutated proteins in a rat-derived dorsal root ganglion neuronal system led to the conclusion that the mutations all altered opening of the sodium channels such that the channels quickly reopened after an electrical impulse had been fired by the nerve cell causing a resurgent sodium current that triggered a second electrical impulse to be fired rapidly after the first.

These observations are consistent with the diseases all being characterized by excitability, over activity of cells that rely on electrical currents, such as nerve cells, skeletal muscle cells, and heart muscle cells.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal References:

  1. Brian W. Jarecki, Andrew D. Piekarz, James O. Jackson, II and Theodore R. Cummins. Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. Journal of Clinical Investigation, Published December 28, 2009 DOI: 10.1172/JCI40801
  2. Stephen C. Cannon and Bruce P. Bean. Sodium channels gone wild: resurgent current from neuronal and muscle channelopathies. Journal of Clinical Investigation, 2010; 120 (1): 80-83 DOI: 10.1172/JCI41340

Cite This Page:

Journal of Clinical Investigation. "Common mechanism underlies many diseases of excitability." ScienceDaily. ScienceDaily, 30 December 2009. <www.sciencedaily.com/releases/2009/12/091228171457.htm>.
Journal of Clinical Investigation. (2009, December 30). Common mechanism underlies many diseases of excitability. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2009/12/091228171457.htm
Journal of Clinical Investigation. "Common mechanism underlies many diseases of excitability." ScienceDaily. www.sciencedaily.com/releases/2009/12/091228171457.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Ways To Celebrate National Nutrition Month

The Best Ways To Celebrate National Nutrition Month

Buzz60 (Mar. 2, 2015) Just when your New Year&apos;s Resolution is losing steam, March comes with fresh inspiration. TC Newman (@PurpleTCNewman) has some tips to incorporate into your lifestyle during National Nutrition Month. Video provided by Buzz60
Powered by NewsLook.com
WHO: 1.1 Billion At Risk Of Hearing Loss, Will They Listen?

WHO: 1.1 Billion At Risk Of Hearing Loss, Will They Listen?

Newsy (Mar. 2, 2015) According to the World Health Organization, 1.1 billion young people are at risk of hearing loss. Can this staggering number change things? Video provided by Newsy
Powered by NewsLook.com
Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins