Featured Research

from universities, journals, and other organizations

Common mechanism underlies many diseases of excitability

Date:
December 30, 2009
Source:
Journal of Clinical Investigation
Summary:
Inherited mutations in voltage-gated sodium channels are associated with many different human diseases, including genetic forms of epilepsy and chronic pain. New research has now determined the functional consequence of three such mutations. These results suggest that there might be a common mechanism underlying diseases caused by mutations in voltage-gated sodium channels.

Inherited mutations in voltage-gated sodium channels (Navs) are associated with many different human diseases, including genetic forms of epilepsy and chronic pain. Theodore Cummins and colleagues, at Indiana University School of Medicine, Indianapolis, have now determined the functional consequence of three such mutations.

The research appears in the Journal of Clinical Investigation.

As noted by Stephen Cannon and Bruce Bean, in an accompanying commentary, these results suggest that there might be a common mechanism for many channelopathies, diseases arising from mutations in ion channel genes such as those analyzed by Cummins and colleagues.

The authors studied the functional consequences of mutations in the human peripheral neuronal sodium channel Nav1.7, the human skeletal muscle sodium channel Nav1.4, and the human heart sodium channel Nav1.5, which are associated with an extreme pain disorder, a muscle condition characterized by slow relaxation of the muscles, and a heart condition and sudden infant death syndrome, respectively. Expression of these mutated proteins in a rat-derived dorsal root ganglion neuronal system led to the conclusion that the mutations all altered opening of the sodium channels such that the channels quickly reopened after an electrical impulse had been fired by the nerve cell causing a resurgent sodium current that triggered a second electrical impulse to be fired rapidly after the first.

These observations are consistent with the diseases all being characterized by excitability, over activity of cells that rely on electrical currents, such as nerve cells, skeletal muscle cells, and heart muscle cells.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal References:

  1. Brian W. Jarecki, Andrew D. Piekarz, James O. Jackson, II and Theodore R. Cummins. Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. Journal of Clinical Investigation, Published December 28, 2009 DOI: 10.1172/JCI40801
  2. Stephen C. Cannon and Bruce P. Bean. Sodium channels gone wild: resurgent current from neuronal and muscle channelopathies. Journal of Clinical Investigation, 2010; 120 (1): 80-83 DOI: 10.1172/JCI41340

Cite This Page:

Journal of Clinical Investigation. "Common mechanism underlies many diseases of excitability." ScienceDaily. ScienceDaily, 30 December 2009. <www.sciencedaily.com/releases/2009/12/091228171457.htm>.
Journal of Clinical Investigation. (2009, December 30). Common mechanism underlies many diseases of excitability. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/12/091228171457.htm
Journal of Clinical Investigation. "Common mechanism underlies many diseases of excitability." ScienceDaily. www.sciencedaily.com/releases/2009/12/091228171457.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins