Featured Research

from universities, journals, and other organizations

In early heart development, genes work in tandem

Date:
January 15, 2010
Source:
Children's Hospital of Philadelphia
Summary:
Studying genes that regulate early heart development in animals, scientists have solved a puzzle about one gene's role, finding that it acts in concert with a related gene. Their finding contributes to understanding how the earliest stages of heart development may go awry, resulting in congenital heart defects in humans. Occurring in approximately 1 in 200 children, congenital heart defects represent the most common human birth defect.

Studying genes that regulate early heart development in animals, scientists have solved a puzzle about one gene's role, finding that it acts in concert with a related gene. Their finding contributes to understanding how the earliest stages of heart development may go awry, resulting in congenital heart defects in humans.

Peter J. Gruber, M.D., Ph.D., a cardiothoracic surgeon at The Children's Hospital of Philadelphia, led a study published this week in the Jan. 15 issue of the Journal of Biological Chemistry. Occurring in approximately 1 in 200 children, congenital heart defects represent the most common human birth defect.

"We uncovered a role for the Gata5 gene, a role that has been unappreciated in vertebrate cardiac development," said Gruber. "Gata5 is a gene that is essential to heart development in other animals, such as frogs and zebrafish, but contrary to expectations, deleting this gene seemed to have no effect on the hearts of mammals. We found, however, that in mice, this gene cooperates closely with other genes to affect heart development. It may work similarly in humans."

The Gata5 gene expresses the protein GATA5, which is a member of a family of zinc-finger transcription factors -- proteins that act as switches to turn gene activity on or off. Transcription factors regulate how DNA carries its instructions into messenger RNA, and RNA in turn helps produce a specific protein with particular functions in biological processes. The GATA transcription factors carry out important tasks during an organism's development.

Working in mice, Gruber's study team genetically engineered mice in which Gata5 genes were inactive, and found the animals were healthy, with normally functioning hearts. They did find, however, that those mice showed increased expression of another gene in the same family, Gata4, which suggested that Gata4 might compensate for the loss of Gata5.

When they bred a new group of mice in which Gata5 was inactive and had only one functioning Gata4 allele (each gene has two alleles) those mice all had profound cardiac defects and died before birth. (Mice with a normal Gata 5 gene and only one functioning Gata4 allele were normal.)

"Our research suggests that Gata5 has a previously unsuspected role during cardiac development, acting cooperatively with Gata4 to direct the heart to form normal structures," said Gruber. "If the same process occurs in humans, that tells us something new about prenatal heart development. The research also shows that studying a single gene in isolation may not be sufficient. Here one gene buffers the effects of losing another gene."

In people, genes in the GATA family regulate the development of heart muscle in particular structures that divide the left and right sides of the heart. Gruber's team is carrying follow-up studies, investigating how the genes seen in mice may be analogous to genes involved in embryonic heart development in humans. "Although a long way off, greater understanding of biological mechanisms during early heart development may eventually provide useful targets for more accurate diagnosis or personalized treatment of children with congenital heart disease," added Gruber.

Grants from the National Institutes of Health and the Pliezowicz Family Foundation supported this study. Gruber's co-authors were Manvendra K. Singh, Yan Li, Shanru Li, Diane Zhou, Min Min Lu, Jonathan A. Epstein, and Edward E. Morrisey, all of the University of Pennsylvania; and Ryan M. Cobb, of Children's Hospital. Gruber and Yan Li are on the staff of both institutions.


Story Source:

The above story is based on materials provided by Children's Hospital of Philadelphia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Singh et al. Gata4 and Gata5 Cooperatively Regulate Cardiac Myocyte Proliferation in Mice. Journal of Biological Chemistry, 2010; 285 (3): 1765 DOI: 10.1074/jbc.M109.038539

Cite This Page:

Children's Hospital of Philadelphia. "In early heart development, genes work in tandem." ScienceDaily. ScienceDaily, 15 January 2010. <www.sciencedaily.com/releases/2010/01/100112122423.htm>.
Children's Hospital of Philadelphia. (2010, January 15). In early heart development, genes work in tandem. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2010/01/100112122423.htm
Children's Hospital of Philadelphia. "In early heart development, genes work in tandem." ScienceDaily. www.sciencedaily.com/releases/2010/01/100112122423.htm (accessed September 18, 2014).

Share This



More Health & Medicine News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com
What HealthKit Bug Means For Your iOS Fitness Apps

What HealthKit Bug Means For Your iOS Fitness Apps

Newsy (Sep. 18, 2014) Apple has delayed the launch of the HealthKit app platform, citing a bug. Video provided by Newsy
Powered by NewsLook.com
Residents Vaccinated as Haiti Fights Cholera Epidemic

Residents Vaccinated as Haiti Fights Cholera Epidemic

AFP (Sep. 18, 2014) Haitians receive the second dose of the vaccine against cholera as part of the UN's vaccination campaign. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Artificial Sweetener Could Promote Diabetes

Artificial Sweetener Could Promote Diabetes

Newsy (Sep. 17, 2014) Doctors once thought artificial sweeteners lacked the health risks of sugar, but a new study says they can impact blood sugar levels the same way. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins