Featured Research

from universities, journals, and other organizations

Ultra-cold chemistry: First direct observation of exchange process in quantum gas

Date:
February 9, 2010
Source:
University of Innsbruck
Summary:
Considerable progresses made in controlling quantum gases open up a new avenue to study chemical processes. An Austrian research team has now succeeded in directly observing chemical exchange processes in an ultra-cold sample of cesium atoms and Feshbach molecules.

When a molecule (two blue spheres) collides with an atom (single red sphere), an atom can be exchanged. A new molecule is produced (red and blue spheres) and an atom (single blue sphere) is released. In the experiment performed in Innsbruck this process is observed at temperatures of less than one millionth above the absolute zero. The exchange is completely determined by the quantum nature of the matter and can be controlled by a magnetic field.
Credit: IQOQI

Considerable progresses made in controlling quantum gases open up a new avenue to study chemical processes. Rudolf Grimm's research team has now succeeded in directly observing chemical exchange processes in an ultracold sample of cesium atoms and Feshbach molecules. They report on their findings in the journal Physical Review Letters.

Complex processes, which to a large extent cannot be observed directly, determine when chemical reactions build molecules or conversely release molecular bonds. Some of these processes need energy (endoergic processes) and others release energy (exoergic processes).

For the first time, great progresses made in the field of ultracold atomic and molecular gases have facilitated the realization of elementary chemical processes in a fully controlled way, where all particles can be prepared in a specifically defined quantum state. In an international first, together with American researchers, Rudolf Grimm and his team of physicists have now succeeded in directly observing and also energetically controlling an exchange process in a quantum gas. "Our experiment showed that it is possible to control exchange processes involving ultracold molecules," Grimm says excitedly.

Directly observed processes

The scientists optically trap cesium atoms and cool them dramatically. A Feshbach association results in an ultracold particle cloud consisting of about 4,000 molecules and 30,000 atoms, where a part of the atoms are arranged in dimers. By applying a microwave pulse, the atoms are transferred into another quantum state without the molecules being modified. After preparing this mixture of molecules (A+A) and atoms (B), the experimental physicists apply a certain magnetic field, which allows them to fully control the binding energy of the molecules. The collision of the molecules and atoms results in an exchange process when a certain threshold of binding energy is reached. The original molecules decay to atoms (A) and new molecules are produced (A+B).

"Since the energy produced in this exoergic process is very low, the reaction products remain in the trap," explains Rudolf Grimm. "Thus, we were able to directly observe the chemical process for the first time ever."

Leading in the field of quantum gases

The research group led by Wittgenstein awardee Rudolf Grimm of the Institute for Experimental Physics of the University of Innsbruck and the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences (ÖAW) assumes a leading role in the research on ultracold quantum gases. For example, in 2002 the physicists produced the first Bose-Einstein condensate of cesium atoms. This success was followed by the realization of a first Bose-Einstein condensate of molecules and a Fermi condensate. The quantum physicists are now able to produce more complex molecules in ultracold quantum gases.

"A totally new field of research opens up, which promises possibilities to study diverse chemical reactions in a controlled way by using ultracold quantum gases," explains Grimm.


Story Source:

The above story is based on materials provided by University of Innsbruck. Note: Materials may be edited for content and length.


Cite This Page:

University of Innsbruck. "Ultra-cold chemistry: First direct observation of exchange process in quantum gas." ScienceDaily. ScienceDaily, 9 February 2010. <www.sciencedaily.com/releases/2010/02/100202101241.htm>.
University of Innsbruck. (2010, February 9). Ultra-cold chemistry: First direct observation of exchange process in quantum gas. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2010/02/100202101241.htm
University of Innsbruck. "Ultra-cold chemistry: First direct observation of exchange process in quantum gas." ScienceDaily. www.sciencedaily.com/releases/2010/02/100202101241.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) — Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) — A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
The Hyped-Up Big Bang Discovery Has A Dust Problem

The Hyped-Up Big Bang Discovery Has A Dust Problem

Newsy (Sep. 22, 2014) — An analysis of new satellite data casts serious doubt on a previous study about the Big Bang that was once hailed as revolutionary. Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) — The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins