Featured Research

from universities, journals, and other organizations

Leaves whisper their properties through ultrasound

Date:
February 6, 2010
Source:
FECYT - Spanish Foundation for Science and Technology
Summary:
The water content of leaves, their thickness, their density and other properties can now be determined without even having to touch them. Researchers in Spain have presented an innovative technique that enables plant leaves to be studied using ultrasound in a quick, simple and noninvasive fashion.

Leaves whisper their properties through ultrasound, new research finds.
Credit: Pranav Yaddanapudi

The water content of leaves, their thickness, their density and other properties can now be determined without even having to touch them. A team of researchers from the CSIC Institute of Acoustics and the Agri-Food Research and Technology Centre (CITA) of Aragón has just presented an innovative technique that enables plant leaves to be studied using ultrasound in a quick, simple and non-invasive fashion.

Related Articles


Tomas E. Gómez, one of the authors of the study and researcher at the CSIC Institute of Acoustics, where a technique has been developed to analyse these parts of plants without touching them, explains that "The method involves establishing a silent dialogue with plant leaves, questioning them and listening to what they say."

The research, recently published in the journal, Applied Physics Letters, demonstrates that some properties of leaves such as thickness, density or compressibility can be determined with this method.

"The voice of the leaves itself is what gives us information about their status and their properties, all in an innocuous and silent way since communication is established by ultrasound, with above-audible frequencies," the scientist indicates.

The technique involves radiating the leaves with broadband ultrasonic pulses (between 0.2 and 2 megahertz), which are emitted through the air from portable devices. In doing so, the leaves start to vibrate and an ultrasonic sensor very similar to the transmitter detects the waves. The signal is then digitalised and the researchers analyse the resonance range, which enables the characteristics of the leaves to be assessed.

The entire process is done in a way that is non-intrusive to the plant. Until now, coupling fluids have been used between the ultrasound transmitter and the material being studied, as is in the case in medicine, for example, when gels or oils are applied to perform an ultrasound.

Listening to leaf moisture

Eustaquio Gil-Pelegrín, co-author of the study and researcher at the Forestry Resources Unit of the Agri-Food Research and Technology Centre (CITA) in Aragón, which has also taken part in the research, explains that "With this method we can also directly estimate, without contact or interference, the water potential of leaves very accurately."

Information about water content enables us to analyse the loss of turgor in the leaves and the internal morphology of their cell layers, which in turn makes it possible to assess the level of development and to see how they are influenced by environmental factors. Research on the status and water potential of plants helps to diagnose the situation of agricultural and natural systems.

Gil-Pelegrin emphasises the effectiveness of the technique, "even to detect critical moments for plants, such as stomatal closure." Gas and liquid exchange takes places through these pores on the surface of the leaf, and [stomata] opening is determined by factors such as light, CO2 concentration and water availability. For example, when there is a drought the stomata close.

Scientists have successfully applied the ultrasound method to the study of perennial leaves (Prunus laurocerasus and Ligustrum lucidum) and deciduous leaves (Populus x euroamericana and Platanus x hispanica).

The team also took cuttings of some leaves to ascertain water loss over time, and they observed variations in leaf resonance and even water mass loss as little as 1%. The details of this line of research will soon be published in the Journal of Experimental Botany.


Story Source:

The above story is based on materials provided by FECYT - Spanish Foundation for Science and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. E. Gómez Álvarez-Arenas, D. Sancho-Knapik, J. J. Peguero-Pina y E. Gil-Pelegrín. Noncontact and noninvasive study of plant leaves using air-coupled ultrasounds. Applied Physics Letters, 2009; 95 (19): 193702 DOI: 10.1063/1.3263138

Cite This Page:

FECYT - Spanish Foundation for Science and Technology. "Leaves whisper their properties through ultrasound." ScienceDaily. ScienceDaily, 6 February 2010. <www.sciencedaily.com/releases/2010/02/100203111628.htm>.
FECYT - Spanish Foundation for Science and Technology. (2010, February 6). Leaves whisper their properties through ultrasound. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/02/100203111628.htm
FECYT - Spanish Foundation for Science and Technology. "Leaves whisper their properties through ultrasound." ScienceDaily. www.sciencedaily.com/releases/2010/02/100203111628.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) — Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) — Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) — In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) — Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins