Featured Research

from universities, journals, and other organizations

Prion leaves lasting mark on memory

Date:
February 5, 2010
Source:
Cell Press
Summary:
Prions are a special class of proteins best known as the source for mad cow and other neurodegenerative diseases. Despite this negative reputation, a prion may also have important and very positive roles in brain function. The researchers suggest that a prion-like protein may participate in memory in higher eukaryotes, from sea slugs on up.

Prions are a special class of proteins best known as the source for mad cow and other neurodegenerative diseases. Despite this negative reputation, according to a new report in the February 5th issue of the journal Cell, a Cell Press publication, a prion may also have important and very positive roles in brain function. The researchers suggest that a prion-like protein may participate in memory in higher eukaryotes, from sea slugs on up.

"The persistence of memory is a fundamental problem," said Kausik Si of Stowers Institute for Medical Research. "Experiences are temporal; they happen once, but somehow must lead to changes [in the brain] that are somewhat permanent."

Those changes must be mediated by molecules, including proteins. "The question is: how can you maintain a stable state with unstable biological molecules," Si said.

And now, research conducted by Si in collaboration with Nobel laureate Eric Kandel, suggests that prions may be one solution to that problem. Prions are distinguished by their ability to assume at least two distinct conformational states, one of which is dominant and self-perpetuating. That means that once a protein switches to its "prion state" it has the ability to convert other "non-prion" proteins to that state as well. Therefore, once engaged, the "prion state" is self-renewing and stable.

The findings suggest that memory traces may depend on a fairly unique mechanism involving a prion-like protein known as CPEB, Si said, adding to a growing body of evidence that proteins with the characteristics ascribed to disease-causing prions may have a broader role in biology.

Scientists have known for some time that plenty of prion-like proteins are found in relatively simple organisms such as yeast, some of which have known functions. A report by another group in Cell last year suggested that prions in yeast may serve as an important source of variation in nature.

Si's team made its discovery in studies of the sea slug Aplysia, which has served as an elemental model for learning and memory for decades. When you touch the animals' gills, they withdraw. When the slugs are trained by touching their gill and delivering a shock, that withdrawal reaction becomes stronger for up to a month.

Scientists long ago traced that simple learned behavior to a specific set of sensory and motor neurons, which are stimulated by the nerve messenger serotonin. But Si wanted to better understand the underlying molecular details. In a survey of proteins made at the synapse when serotonin is applied, he turned up CPEB. Upon closer examination of the protein's sequence, Si had what he calls his "aha moment." He realized CPEB looked a lot like the prions others had found in yeast.

He earlier reported evidence that the slug protein does display prion-like properties when inserted into yeast. They now provide evidence that those characteristics hold when the protein is expressed in its usual spot -- Aplysia sensory neurons. The proteins switch to their prion state and clump together (as prions typically do) in the presence of serotonin. An antibody that targets the clumped prion protein blocks the persistence of neural connections that are the cellular basis for learning and memory.

"These results are consistent with the idea that ApCPEB can act as a self-sustaining prion-like protein in the nervous system and thereby might allow the activity-dependent change in synaptic efficacy to persist for long periods of time," the researchers conclude. Si cautions, however, that they haven't yet proven that blocking CPEB's ability to self-perpetuate also blocks memory. For that, he says they would need to see whether a slug with a mutant version of the protein would learn but then quickly forget.

"Persistence of memory is a difficult problem," Si said. The new evidence offers "at least an idea" for how this may happen and he suspects the prion-like protein's apparent role in memory may turn out to be a more general phenomenon. His group is following up on their findings by investigating the role of the fly version of CPEB, and Si notes that humans do have a similar protein.

The researchers include Kausik Si, Stowers Institute for Medical Research, Kansas City, MO, University of Kansas Medical Center, Kansas City, KS; Yun-Beom Choi, New York State Psychiatric Institute, New York, NY; New York State Psychiatric Institute, New York, NY; Erica White-Grindley, Stowers Institute for Medical Research, Kansas City, MO; Amitabha Majumdar, Stowers Institute for Medical Research, Kansas City, MO; and Eric R. Kandel, Howard Hughes Medical Institute, New York State Psychiatric Institute, New York, NY.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Prion leaves lasting mark on memory." ScienceDaily. ScienceDaily, 5 February 2010. <www.sciencedaily.com/releases/2010/02/100204144420.htm>.
Cell Press. (2010, February 5). Prion leaves lasting mark on memory. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/02/100204144420.htm
Cell Press. "Prion leaves lasting mark on memory." ScienceDaily. www.sciencedaily.com/releases/2010/02/100204144420.htm (accessed April 17, 2014).

Share This



More Mind & Brain News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Couples Who Sleep Less Than An Inch Apart Might Be Happiest

Couples Who Sleep Less Than An Inch Apart Might Be Happiest

Newsy (Apr. 16, 2014) A new study by British researchers suggests couples' sleeping positions might reflect their happiness. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins