Featured Research

from universities, journals, and other organizations

Genetic secrets to jumping the species barrier

Date:
February 13, 2010
Source:
Society for General Microbiology
Summary:
Scientists have pinpointed specific mutations that allow a common plant virus to infect new species. Understanding the genetics of the key interactions between viruses and hosts could provide insight to how some viruses manage to jump the species barrier and even give us a better idea of how animal diseases are generated.

Scientists have pinpointed specific mutations that allow a common plant virus to infect new species, according to research published in the March issue of the Journal of General Virology. Understanding the genetics of the key interactions between viruses and hosts could provide insight to how some viruses manage to jump the species barrier and even give us a better idea of how animal diseases are generated.

Researchers from Saga University, Japan studied the genetic changes that took place when turnip mosaic virus (TuMV) -- a plant mosaic disease spread by aphids -- adapted to infect a new species. Genetic analysis showed TuMV had acquired an average of 140 significant mutations, on its evolutionary pathway from Brassica rapa (turnip), a host to which it is well adapted, to a new host Raphanus sativus (radish).

Interestingly, many of the mutations were found clustered in genes that code for two key viral proteins, P3 and CI. These two proteins are already known to interact with genes that help plants resist TuMV infection. Researchers think that a kind of molecular tug of war between these proteins and plant resistance mechanisms takes place, that determines not only the severity of disease following infection, but also whether the virus can infect its host in the first place.

Both plant and animal viruses are specifically adapted to infect and replicate in particular types of host. To ensure their spread and survival, viruses can adapt to their environment by mutating. Mutations may alter the severity of infection in existing hosts, change how contagious a virus is, or allow the virus to infect new hosts. Viruses such as TuMV that use RNA (rather than DNA) as their genetic material mutate especially easily as they use a copying method that is far more error-prone.

Professor Kazusato Ohshima who led the study believes that research into the virus-host interface in plants could have far-reaching benefits. "Revealing the subtleties of the interaction between viruses and plant resistance mechanisms could help breeders produce better crops, for example by selecting strains that block changes to TuMV." He also said the work could help the study of animal viruses. "We are trying to understand how novel viruses emerge -- particularly how viruses are able to cross the species barrier. This in turn gives us a better idea of how pandemics are generated and how best to stem their spread."


Story Source:

The above story is based on materials provided by Society for General Microbiology. Note: Materials may be edited for content and length.


Cite This Page:

Society for General Microbiology. "Genetic secrets to jumping the species barrier." ScienceDaily. ScienceDaily, 13 February 2010. <www.sciencedaily.com/releases/2010/02/100211211439.htm>.
Society for General Microbiology. (2010, February 13). Genetic secrets to jumping the species barrier. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/02/100211211439.htm
Society for General Microbiology. "Genetic secrets to jumping the species barrier." ScienceDaily. www.sciencedaily.com/releases/2010/02/100211211439.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins