Featured Research

from universities, journals, and other organizations

Mosquito genes yield secrets to how they survive malaria-causing parasite

Date:
February 22, 2010
Source:
Kansas State University
Summary:
Researchers are studying the main contributing mosquito species to malaria transmission in Africa. They are characterizing genes specific to mosquito blood cells. The researchers were able to identify genes in the blood cells whose expression changed with malaria infection. This could be used for disease control, ultimately. On a more basic level, the researchers are learning how the immune system works and how it recognizes a parasite and limits the infection.

Anopheles gambiae mosquito, a vector for the malarial parasite.
Credit: CDC/Donated by The World Health Organization (WHO), Geneva, Switzerland

By unraveling the mysteries that exist within the molecular composition of mosquitoes, a team of Kansas State University researchers is trying to discover how the insects survive a parasite that causes malaria in humans.

Kristin Michel, K-State assistant professor in the Division of Biology, has been leading studies involving Anopheles gambiae s.s. mosquitoes, which are the main contributing species to malaria transmission in Africa. Michel's research team's recent project involved characterizing genes specific to hemocytes, which are mosquito blood cells. The researchers were able to identify genes in the blood cells whose expression changed with malaria infection.

"This could be used for disease control, ultimately," Michel said. "On a more basic level, we want to understand how the immune system works and how it recognizes a parasite and limits the infection."

The research was published in the Proceedings of the National Academy of Sciences in December 2009. The other contributing K-State researchers are Chunju An, research associate in biochemistry, and Krista McKay, senior in microbiology.

Michel said the research emphasizes one part of the mosquito's immune system that defends the insect against the Plasmodium parasite, which causes malaria in humans. The project is a step toward characterization of this branch of immunity.

"If you think about the immune system, it gobbles up things like bacteria," Michel said. "Insects have cells that help the body to ultimately kill the bacteria. However, we do not know how these cells contribute to getting rid of parasites."

While these blood cells are essential to the mosquito's cellular immune response, little is known about their molecular composition. For the study, the researchers collected blood cells from the mosquito species and then used microarrays to identify the cells' genes and how they are related to other insect species.

They also collected blood cells from mosquitoes that were infected with the parasite and identified genes whose expression levels changed with malaria infection.

"It could be possible through gene manipulation to create mosquitoes unable to transmit malaria," McKay said. "This list of genes could help researchers develop new prevention strategies."

The researchers are continuing the study and looking comprehensively at the blood cells and how they respond to the parasite. Michel said the mosquito produces many molecules that either help or prevent parasite infection. The mosquito's cells are an important factory for these molecules, she said. The researchers are trying to discover the factors that kill the parasite within the mosquito.

The K-State group collaborated with several researchers from the faculty of natural sciences at Imperial College London in the division of cell and molecular biology: Sofia Pinto, Fabrizio Lombardo, Anastasios Koutsos, Robert Waterhouse, Chandra Ramakrishnan and Fotis Kafatos.

The project has been ongoing since 2004. The research was funded by grants from the Kansas Institutional Development Award Network of Biomedical Research Excellence, the Wellcome Trust and the National Institute of Allergy and Infectious Diseases.


Story Source:

The above story is based on materials provided by Kansas State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sofia B. Pinto, Fabrizio Lombardo, Anastasios C. Koutsos, Robert M. Waterhouse, Krista Mckay, Chunju An, Chandra Ramakrishnan, Fotis C. Kafatos, and Kristin Michel. Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae. Proceedings of the National Academy of Sciences, 2009; 106 (50): 21270 DOI: 10.1073/pnas.0909463106

Cite This Page:

Kansas State University. "Mosquito genes yield secrets to how they survive malaria-causing parasite." ScienceDaily. ScienceDaily, 22 February 2010. <www.sciencedaily.com/releases/2010/02/100216114024.htm>.
Kansas State University. (2010, February 22). Mosquito genes yield secrets to how they survive malaria-causing parasite. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2010/02/100216114024.htm
Kansas State University. "Mosquito genes yield secrets to how they survive malaria-causing parasite." ScienceDaily. www.sciencedaily.com/releases/2010/02/100216114024.htm (accessed August 1, 2014).

Share This




More Health & Medicine News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins