Featured Research

from universities, journals, and other organizations

How nerve cells grow: Researcher decodes molecular process that controls growth of nerve cells

Date:
February 20, 2010
Source:
Max-Planck-Gesellschaft
Summary:
A brain researcher has discovered the workings of a process that had been completely overlooked until now, and that allows nerve cells in the brain to grow and form complex networks. The study shows that an enzyme which usually controls the destruction of protein components has an unexpected function in nerve cells: it controls the structure of the cytoskeleton and thus ensures that nerve cells can form the tree-like extensions that are necessary for signal transmission in the brain.

Fig.: In the brain of mice, which cannot produce Nedd4-1, the extensions of nerve cells are shorter and of much simpler construction (example top) than in the brain of normal mice (example bottom).
Credit: Hiroshi Kawabe

Brain researcher Hiroshi Kawabe has discovered the workings of a process that had been completely overlooked until now, and that allows nerve cells in the brain to grow and form complex networks.

Related Articles


The study, which has now been published in the journal Neuron, shows that an enzyme which usually controls the destruction of protein components has an unexpected function in nerve cells: it controls the structure of the cytoskeleton and thus ensures that nerve cells can form the tree-like extensions that are necessary for signal transmission in the brain.

In order to be able to receive signals from other cells, nerve cells form complex extensions called dendrites (from the Greek 'dendron' meaning tree). The growth of dendrites in the human brain takes place mainly during late embryonic and infantile brain development. During this phase, dendrites, with a total length of many hundred kilometres, grow from the 100 billion nerve cells in our brain. The result is a highly-complex network of nerve cells that controls all bodily functions -- from breathing to complicated learning processes.

In order that this incredible growth phase of brain development does not lead to chaos, the growth of the dendrites must be accurately controlled. In fact, a large number of signal processes control the direction and the speed of dendrite growth by influencing the structure of the cytoskeleton, which is inside the growing dendrite and responsible for its shape and extension.

The Gφttingen-based brain researcher Hiroshi Kawabe has now discovered exactly how the growth of the cytoskeleton is controlled during the dendrite development. Using specially bred genetically engineered mice, the Japanese guest scientist, who conducts research at the Max Planck Institute for Experimental Medicine, discovered that the Nedd4-1 enzyme is essential for regular dendrite growth. Nedd4-1 is an enzyme that usually controls the degradation of protein components in cells by combining them with another protein called ubiquitin. The cell identifies these ubiquitinated molecules as "waste" and degrades them. In some cases, however, the ubiquitination does not lead to the degradation of the marked protein but changes its function instead.

Nedd4-1 prevents degradation of the cytoskeleton

Hiroshi Kawabe has now shown that the Nedd4-1 enzyme ubiquitinates a signal protein called Rap2, and thus prevents it causing the dismemberment of the cytoskeleton and the collapse of the dendrites. "As long as Nedd4-1 is active, the nerve cell dendrites can grow normally," reports Kawabe. "In its absence, the dendrite growth comes to a standstill and previously formed dendrites collapse, with dramatic consequences for the function of nerve cell networks in the brain." There are, however, probably a number of parallel operating signal paths which control the dendrite growth. This explains why nerve cells can also form dendrites without Nedd4-1 -- albeit significantly fewer in number and shorter. The Nedd4/Rap2/TNIK mechanism would then be only one of several that can partially compensate each other.

Kawabe's discovery provides important new insight into the mechanisms which control the development of the brain. "What is surprising is that no-one has investigated this before," says the Japanese biochemist. Scientists have long been aware that Nedd4-1 is one of the most prevalent ubiquitination enzymes in nerve cells and is produced with great frequency in the developmental phase when nerve cells grow and form their dendrites. As Kawabe points out, the function of Nedd4-1 has already been investigated in dozens of studies. "But very little work has been carried out on its role in nerve cell development, which would have been the obvious thing to do."


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kawabe, H., Neeb, A., Dimova, K., Young, S.M.Jr. Takeda, M., Katsurabayashi, S., Mitkovski, M., Malakhova, O.A., Zhang, D.-E., Umikawa, M., Kariya, K., Goebbels, S., Nave, K.-A., Rosenmund, C., Jahn, O., Rhee, J.-S. and Brose, N. Regulation of Rap2A by the Ubiquitin Ligase Nedd4-1 Controls Neurite Development. Neuron, 2010; 65 (3): 358 DOI: 10.1016/j.neuron.2010.01.007

Cite This Page:

Max-Planck-Gesellschaft. "How nerve cells grow: Researcher decodes molecular process that controls growth of nerve cells." ScienceDaily. ScienceDaily, 20 February 2010. <www.sciencedaily.com/releases/2010/02/100219102216.htm>.
Max-Planck-Gesellschaft. (2010, February 20). How nerve cells grow: Researcher decodes molecular process that controls growth of nerve cells. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/02/100219102216.htm
Max-Planck-Gesellschaft. "How nerve cells grow: Researcher decodes molecular process that controls growth of nerve cells." ScienceDaily. www.sciencedaily.com/releases/2010/02/100219102216.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins