Featured Research

from universities, journals, and other organizations

First whole genome sequencing of family of four reveals new genetic power

Date:
March 10, 2010
Source:
Institute for Systems Biology
Summary:
Researchers have analyzed the first whole genome sequences of a human family of four. The findings demonstrate the benefit of sequencing entire families, including lowering error rates, identifying rare genetic variants and identifying disease-linked genes.

The Institute for Systems Biology (ISB) has analyzed the first whole genome sequences of a human family of four. The findings of a project funded through a partnership between ISB and the University of Luxembourg was published online by Science on its Science Express website. It demonstrates the benefit of sequencing entire families, including lowering error rates, identifying rare genetic variants and identifying disease-linked genes.

Related Articles


"We were very pleased and a little surprised at how much additional information can come from examining the full genomes of the same family." said David Galas, PhD, a corresponding author on the paper, an ISB faculty member and its senior vice president of strategic partnerships. "Comparing the sequences of unrelated individuals is useful, but for a family the results are more accurate. We can now see all the genetic variations, including rare ones, and can construct the inheritance of every piece of the chromosomes, which is critical to understanding the traits important to health and disease."

"The continuing decline in the difficulty and cost of sequencing now enables us to use these new strategies for deriving genetic information that was too difficult or expensive to access in the past," Galas said.

ISB partnered with Complete Genomics, based in Mountain View California, to sequence the genomes of a father, mother and two children. Both children had two recessive genetic disorders, Miller syndrome, a rare craniofacial disorder, and primary ciliary dyskinesia (PCD), a lung disease. By sequencing the entire family, including the parents, researchers were able to reduce the number of candidate genes associated with Miller syndrome to four.

"An important finding is that by determining the genome sequences of an entire family one can identify many DNA sequencing errors, and thus greatly increase the accuracy of the data," said Leroy Hood, MD, PhD, the paper's other corresponding author, and co-founder and president of ISB. "This will ultimately help us understand the role of genetic variations in the diagnosis, treatment, and prevention of disease."

An exciting finding from this study, the first direct estimate of human intergenerational mutation rate, is how much the genome changes from one human generation to the next -- the intergenerational mutation rate. The researchers found that gene mutations from parent to child occurred at half the most widely expected rate.

"This estimate could have implications for how we think about genetic diversity, but more importantly the approach has the potential to increase enormously the power and impact of genetic research," said Galas. "Our study illustrates the beginning of a new era in which the analysis of a family's genome can aid in the diagnosis and treatment of individual family members. We could soon find that our family's genome sequence will become a normal part of our medical records."


Story Source:

The above story is based on materials provided by Institute for Systems Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jared C. Roach, Gustavo Glusman, Arian F. A. Smit, Chad D. Huff, Robert Hubley, Paul T. Shannon, Lee Rowen, Krishna P. Pant, Nathan Goodman, Michael Bamshad, Jay Shendure, Radoje Drmanac, Lynn B. Jorde, Leroy Hood, and David J. Galas. Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing. Science, 2010; DOI: 10.1126/science.1186802

Cite This Page:

Institute for Systems Biology. "First whole genome sequencing of family of four reveals new genetic power." ScienceDaily. ScienceDaily, 10 March 2010. <www.sciencedaily.com/releases/2010/03/100310185541.htm>.
Institute for Systems Biology. (2010, March 10). First whole genome sequencing of family of four reveals new genetic power. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2010/03/100310185541.htm
Institute for Systems Biology. "First whole genome sequencing of family of four reveals new genetic power." ScienceDaily. www.sciencedaily.com/releases/2010/03/100310185541.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins