Featured Research

from universities, journals, and other organizations

Quantum dots spotlight DNA-repair proteins in motion

Date:
March 14, 2010
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
Repair proteins appear to efficiently scan the genome for errors by jumping like fleas between DNA molecules, sliding along the strands, and perhaps pausing at suspicious spots, say researchers who tagged the proteins with quantum dots to watch the action unfold.

DNA tightrope: (A) YOYO labeled DNA tightopes and beads; (B) UvrA-red Qdots; (C) Schematic of UvrA-Qdot bound to DNA tightrope.
Credit: Image courtesy of Bennett Van Houten, Ph.D., University of Pittsburgh Cancer Institute

Repair proteins appear to efficiently scan the genome for errors by jumping like fleas between DNA molecules, sliding along the strands, and perhaps pausing at suspicious spots, say researchers at the University of Pittsburgh, the University of Essex and the University of Vermont who tagged the proteins with quantum dots to watch the action unfold.

Related Articles


The findings are available today in Molecular Cell.

Everyone is constantly bombarded with environmental toxins that inflict small errors in the DNA code, so a rapid repair system is essential to maintain the integrity of the sequences for proper cell function, explained senior author Bennett Van Houten, Ph.D., Richard M. Cyert Professor of Molecular Oncology and leader, molecular and cellular cancer biology program, University of Pittsburgh Cancer Institute (UPCI), and professor, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine.

"How this system works is an important unanswered question in this field," he said. "It has to be able to identify very small mistakes in a 3-dimensional morass of gene strands. It's akin to spotting potholes on every street all over the country and getting them fixed before the next rush hour."

The researchers sought to unravel the mystery by tagging two repair proteins, called UvrA and UvrB, with quantum dots, which are semi-conductor nanocrystals that light up in different colors. They also stretched the usually clumped DNA into multiple "tightropes" to see the process more clearly.

They watched while UvrA proteins randomly jumped from one DNA molecule to the next, holding on to one spot for about seven seconds before hopping to another site. But when UvrA formed a complex with two UvrB molecules (UvrAB), a new and more efficient search technique emerged: the complex slid along the DNA tightrope for as long as 40 seconds before detaching itself and jumping to another molecule.

"If an E.coli bacterium had only one UvrAB complex, 13 hours would elapse before the entire genome was scanned for errors," said lead researcher Neil M. Kad, Ph.D., Department of Biological Sciences, University of Essex, United Kingdom. "About 40 complexes, comparable to the estimates of what occurs naturally, would be needed to scan it within the bacterium's 20-minute doubling time."

In addition to random jumping and sliding, the researchers also observed what they called "paused motion," in which UvrAB's motion seemed slower and purposeful.

"About one-third of the motile molecules in our study behaved this way," said co-author David M. Warshaw, Ph.D., professor and chair, Department of Molecular Physiology and Biophysics, University of Vermont. "Paused motion could represent UvrAB complexes checking for structural abnormalities associated with DNA damage."

The researchers now are exploring the possibility that the complexes sample the shape or chemical configuration of DNA by interacting with it; an error could alter the local DNA structure, changing its handshake with the repair proteins and perhaps triggering a corrective response.

The study was funded by the National Institutes of Health, the Royal Society and UPCI. Hong Wang, Ph.D., of UPCI and the University of Pittsburgh School of Medicine, and Guy G. Kennedy, of the University of Vermont's Instrumentation and Model Facility, co-authored the paper.


Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Neil M. Kad, Hong Wang, Guy G. Kennedy, David M. Warshaw, Bennett Van Houten. Collaborative Dynamic DNA Scanning by Nucleotide Excision Repair Proteins Investigated by Single- Molecule Imaging of Quantum-Dot-Labeled Proteins. Molecular Cell, 2010; 37 (5): 702-713 DOI: 10.1016/j.molcel.2010.02.003

Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "Quantum dots spotlight DNA-repair proteins in motion." ScienceDaily. ScienceDaily, 14 March 2010. <www.sciencedaily.com/releases/2010/03/100311123522.htm>.
University of Pittsburgh Schools of the Health Sciences. (2010, March 14). Quantum dots spotlight DNA-repair proteins in motion. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2010/03/100311123522.htm
University of Pittsburgh Schools of the Health Sciences. "Quantum dots spotlight DNA-repair proteins in motion." ScienceDaily. www.sciencedaily.com/releases/2010/03/100311123522.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins