Featured Research

from universities, journals, and other organizations

Long polymer chains dance the conga: new model of motion of molecules that give cells structure

Date:
April 21, 2010
Source:
University of Illinois at Urbana-Champaign
Summary:
Researchers have demonstrated a new model for the motion of actin filaments, the molecules that give a cell its structure. Researchers have long assumed that actin filaments could move anywhere within a confined cylinder of space, like a snake slithering through a pipe. However, this study shows that a filament moves more like a conga line on a crowded dance floor: sometimes it's a tight squeeze.

Researchers at the University of Illinois found that actin filaments (red) move in a path (blue) with an irregular diameter, instead of a cylinder as widely accepted.
Credit: Image courtesy of Bo Wang

Understanding the steps to the intricate dance inside a cell is essential to one day choreographing the show. By studying the molecules that give a cell its structure, University of Illinois researchers are moving closer to understanding one of those steps: the conga line.

Led by Steve Granick, Founder Professor of Engineering and professor of materials science and engineering, of chemistry, of chemical and biomolecular engineering, and of physics at the U. of I., the team will publish its findings in the journal Physical Review Letters.

Long chains of the molecule actin form filaments that are a key component of the matrix that give cells structure. They play a role in numerous cellular processes, including signaling and transport. Similar polymers are used in applications from tires to contact lenses to the gels used for DNA and protein analyses.

Long actin filaments display snakelike movement, but their serpentine wriggling is limited by crowding from other filaments in the matrix. Researchers have long assumed that actin filaments could move anywhere within a confined cylinder of space, like a snake slithering through a pipe.

However, Granick and his research group have created a new model showing that the filaments' track isn't a perfect cylinder after all. Rather than a snake in a pipe, a filament moves more like a conga line on a crowded dance floor: Sometimes it's a tight squeeze.

To track the filaments' motion, the Illinois team used a novel approach. In the past researchers have observed the entire large molecule, which was like trying to figure out a conga line's trajectory by watching the entire crowd writhing on the dance floor.

"But," Granick said, "if I'm able to follow just one person in the crowd, I know a lot more about how the conga line is moving."

Granick and his team tagged a few individual links in the molecular chain with a tiny fluorescent dye and monitored how those moved as the filament slithered along. In the conga line analogy, this approach would be like giving neon shirts to a few people at various points in the line, turning on black lights, and tracking the neon-clad dancers' motion to map out the conga line's path around the floor.

"What we found is that, as the filaments slither, sometimes they're more free and sometimes they're more tightly tangled up with each other," Granick said. "Just like in a crowded place, you can only move through the empty spaces."

Next, the team will focus on further improving their model to include a molecule's forward motion as well as its lateral wiggling. "So far we've been able to see the conga line bending, moving sideways, and now we want to see it move in the direction it's pointing," Granick said.

"That's the missing link in completing this picture, which will lead to improved understanding of mechanical properties for all the situations where these filaments appear."

The U.S. Department of Energy-funded team also included graduate students Bo Wang (lead author), Juan Guan and Stephen Anthony, research scientist Sung Chul Bae and materials science and engineering professor Kenneth Schweizer.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bo Wang, Juan Guan, Stephen M. Anthony, Sung Chul Bae, Kenneth S. Schweizer, and Steve Granick. Confining Potential when a Biopolymer Filament Reptates. Physical Review Letters, 2010; 104 (11): 118301 DOI: 10.1103/PhysRevLett.104.118301

Cite This Page:

University of Illinois at Urbana-Champaign. "Long polymer chains dance the conga: new model of motion of molecules that give cells structure." ScienceDaily. ScienceDaily, 21 April 2010. <www.sciencedaily.com/releases/2010/03/100316124233.htm>.
University of Illinois at Urbana-Champaign. (2010, April 21). Long polymer chains dance the conga: new model of motion of molecules that give cells structure. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/03/100316124233.htm
University of Illinois at Urbana-Champaign. "Long polymer chains dance the conga: new model of motion of molecules that give cells structure." ScienceDaily. www.sciencedaily.com/releases/2010/03/100316124233.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins