Featured Research

from universities, journals, and other organizations

Disabling Skp2 gene helps shut down cancer growth

Date:
March 17, 2010
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Increased understanding of the Skp2 gene and its relation to cellular senescence may lead to the development of novel agents that can suppress tumor development in common types of cancer, researchers report.

Increased understanding of the Skp2 gene and its relation to cellular senescence may lead to the development of novel agents that can suppress tumor development in common types of cancer, researchers from The University of Texas M. D. Anderson Cancer Center and Memorial Sloan-Kettering Cancer Center report in the journal Nature.

Skp2 is involved in promoting cell cycle regulation, cell proliferation, cell growth and the formation of tumors, and it is overexpressed in a variety of human cancers, according to lead author Hui-Kuan Lin, Ph.D., an assistant professor in M. D. Anderson's Department of Molecular and Cellular Oncology.

Lin and colleagues found that inactivating Skp2 after oncogenes are overexpressed stifles cancer growth by causing senescence -- the irreversible loss of a cell's ability to divide and grow. Harnessing the power of cellular senescence to push rapidly dividing cells into a dormant state might provide another way to prevent or control common malignancies like prostate cancer.

Experiments Yield Surprising Results

The researchers conducted a series of experiments in tumor cell lines and mouse models that have shed new light on the interplay of Skp2 and cellular senescence.

"We discovered that Skp2 actually exhibits oncogenic activity, which is required for cancer development in multiple tumor models, such as the Pten-deficient and the p19Arf -deficient mouse models," Lin said. "We found that Skp2 regulates tumorigenesis to trigger the cellular senescence program. This program is unexpectedly independent of the p19Arf-p53 pathway, which was previously believed to be critical for cellular senescence."

The researchers also found that induction of cellular senescence did not cause DNA damage, and their results suggest that Skp2 inactivation can suppress cellular transformation to cancer even in the setting of an impaired p19Arf-p53 senescence response.

Moreover, research conducted in mouse models with faulty or inactive tumor suppressor networks showed that Skp2 deficiency and oncogenic signaling elicit a senescence response that restricts formation of tumors.

Novel Findings Point to New Therapeutic Approaches

Lin said these studies suggest that in the future Skp2 might be an effective therapeutic target for tumors with deregulated Akt signaling due to the loss or inactivation of Pten functions. Pten, which is commonly lost in human cancers, acts as a tumor suppressor gene by suppressing Akt signaling. Skp2 and Pten loss are believed to cooperate in triggering cellular senescence to restrict invasive prostate cancer.

"We now want to examine whether Skp2 is required in other tumor model systems, such as a HER2 model, to determine whether it is globally required for an oncogenic event," said Lin, who previously was affiliated with Memorial Sloan-Kettering Cancer Center's Department of Pathology and Cancer Biology and Genetics program and continued his research at M. D. Anderson. "We are testing whether Skp2 might be widely used for different types of cancer or perhaps used to trigger this newly described cellular senescence program."

The researchers also are working to develop a Skp2-specific small molecule inhibitor to establish that the protein is indeed an important therapeutic target in cancer treatment. They believe that Skp2-based therapy might also be used as a general cancer treatment that could be combined with existing cancer therapies.

Research was funded by NIH grants to senior author Pier Paolo Pandolfi, M.D., Ph.D., of Memorial Sloan-Kettering, and an M. D. Anderson Trust Scholar Award and U.S. Department of Defense Prostate Cancer New Investigator Award to Lin.

Co-authors with Lin are Szu-Wei Lee, Chan-Hsin Chan, Ph.D., Wei-Lei Yang, and Jing Wang, Ph.D., of M. D. Anderson's Department of Molecular and Cellular Oncology; Zhenbang Chen, Ph.D., Guocan Wang, Ph.D., Caterina Nardella, Ph.D., and Pier Paolo Pandolfi, M.D., Ph.D., all of the Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center's Department of Pathology, and the Cancer Genetics Program at Beth Israel Deaconess Medical Center; Ainara Egia of Beth Israel Deaconess' Cancer Genetics Program; Keiichi I. Nakayama, M.D., Ph.D., of the Department of Molecular and Cellular Biology of the Medical Institute of Bioregulation at Kyushu University in Fukuoka, Japan; and Carlos Cordon-Cardo, M.D., Ph.D., and Julie Teruya-Feldstein, M.D., of Memorial Sloan-Kettering Cancer Center's Department of Pathology.

Chan and Yang are graduate students at The University of Texas Graduate School of Biomedical Sciences at Houston, a joint program of M. D. Anderson and The University of Texas Health Science Center at Houston (UTHealth).


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lin et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature, 2010; 464 (7287): 374 DOI: 10.1038/nature08815

Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Disabling Skp2 gene helps shut down cancer growth." ScienceDaily. ScienceDaily, 17 March 2010. <www.sciencedaily.com/releases/2010/03/100317144636.htm>.
University of Texas M. D. Anderson Cancer Center. (2010, March 17). Disabling Skp2 gene helps shut down cancer growth. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/03/100317144636.htm
University of Texas M. D. Anderson Cancer Center. "Disabling Skp2 gene helps shut down cancer growth." ScienceDaily. www.sciencedaily.com/releases/2010/03/100317144636.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins