Featured Research

from universities, journals, and other organizations

What makes you unique? Not genes so much as surrounding sequences, study finds

Date:
March 18, 2010
Source:
Stanford University Medical Center
Summary:
The key to human individuality may lie not in our genes, but in the sequences that surround and control them, according to new research.

Researchers have found that the unique, specific changes among individuals in the sequence of DNA affect the ability of "control proteins" called transcription factors to bind to the regions that control gene expression.
Credit: iStockphoto/Andrey Prokhorov

The key to human individuality may lie not in our genes, but in the sequences that surround and control them, according to new research by scientists at the Stanford University School of Medicine and Yale University. The interaction of those sequences with a class of key proteins, called transcription factors, can vary significantly between two people and are likely to affect our appearance, our development and even our predisposition to certain diseases, the study found.

The discovery suggests that researchers focusing exclusively on genes to learn what makes people different from one another have been looking in the wrong place.

"We are rapidly entering a time when nearly anyone can have his or her genome sequenced," said Michael Snyder, PhD, professor and chair of genetics at Stanford. "However, the bulk of the differences among individuals are not found in the genes themselves, but in regions we know relatively little about. Now we see that these differences profoundly impact protein binding and gene expression."

Snyder is the senior author of two papers -- one in Science Express and one in Nature -- exploring these protein-binding differences in humans, chimpanzees and yeast. Snyder, the Stanford W. Ascherman, MD, FACS, Professor in Genetics, came to Stanford in July 2009 from Yale, where much of the work was conducted.

Genes, which carry the specific instructions necessary to make proteins do the work of the cell, vary by only about 0.025 percent across all humans. Scientists have spent decades trying to understand how these tiny differences affect who we are and what we become. In contrast, non-coding regions of the genome, which account for approximately 98 percent of our DNA, vary in their sequence by about 1 to 4 percent. But until recently, scientists had little, if any, idea what these regions do and how they contribute to the "special sauce" that makes me, me, and you, you.

Now Snyder and his colleagues have found that the unique, specific changes among individuals in the sequence of DNA affect the ability of "control proteins" called transcription factors to bind to the regions that control gene expression. As a result, the subsequent expression of nearby genes can vary significantly.

"People have done a lot of work over the years to characterize differences in gene expression among individuals," said Snyder. "We're the first to look at differences in transcription-factor binding from person to person." What's more, by selectively breeding, or crossing, yeast strains, Snyder and his colleagues found that many, but not all, of these differences in binding and expression levels are heritable.

In the Science Express paper, which will be published online March 18, Snyder and his colleagues compared the binding patterns of two transcription factors in 10 people and one chimpanzee. They identified more than 15,000 binding sites across the genome for the transcription factor called NF-kB and more than 19,000 sites for another factor called RNA PolII. They then looked to see if every site was bound equally strongly by the proteins, or if there were variations among individuals.

They found that about 25 percent of the PolII sites and 7.5 percent of the NF-kB sites exhibited significant binding differences among individuals -- in some cases greater than two orders of magnitude from one person to another. (For comparison, the binding differences between the humans and the chimpanzee were about 32 percent.) Many of these binding differences could be traced to differences in sequences or structure in the protein binding sites, and several were directly correlated to changes in gene expression levels.

"These binding regions, or chunks, vary among individuals," said Snyder, "and they have a profound impact on gene expression." In particular, the researchers found that several of the variable binding regions were near genes involved in such diseases as type-1 diabetes, lupus, leukemia and schizophrenia.

The researchers confirmed and extended their findings in the Nature paper, which will be published online March 17. In this study, they used yeast to determine that many of the binding differences and variations in gene expression levels in individuals are passed from parent to progeny, and they identify several control proteins that vary -- a study that would have been impossible to perform in humans.

"We conducted the two studies in parallel," said Snyder, "and found the same thing. Many of the binding sites differed. When we mapped the areas of difference, we found that they were associated with key regulators of variation in the population. Together these two studies tell us a lot about the so-called regulatory code that controls variation among individuals."

The research in the Science Express study was supported by the National Institutes of Health, the European Molecular Biology Laboratory and the Howard Hughes Medical Institute's Medical Fellows Program. The research in the Nature study was supported by the National Institutes of Health. In addition to Snyder, other Stanford researchers involved in the two studies include postdoctoral scholars Fabian Grubert, PhD; Minyi Shi, PhD; and Manoj Hariharan, PhD; and graduate student Konrad Karczewski.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Journal References:

  1. Maya Kasowski, Fabian Grubert, Christopher Heffelfinger, Manoj Hariharan, Akwasi Asabere, Sebastian M. Waszak, Lukas Habegger, Joel Rozowsky, Minyi Shi, Alexander E. Urban, Mi-Young Hong, Konrad J. Karczewski, Wolfgang Huber, Sherman M. Weissman, Mark B. Gerstein, Jan O. Korbel, and Michael Snyder. Variation in Transcription Factor Binding Among Humans. Science, 2010; DOI: 10.1126/science.1183621
  2. Wei Zheng, Hongyu Zhao, Eugenio Mancera, Lars M. Steinmetz & Michael Snyder. Genetic analysis of variation in transcription factor binding in yeast. Nature, 2010; DOI: 10.1038/nature08934

Cite This Page:

Stanford University Medical Center. "What makes you unique? Not genes so much as surrounding sequences, study finds." ScienceDaily. ScienceDaily, 18 March 2010. <www.sciencedaily.com/releases/2010/03/100318141536.htm>.
Stanford University Medical Center. (2010, March 18). What makes you unique? Not genes so much as surrounding sequences, study finds. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2010/03/100318141536.htm
Stanford University Medical Center. "What makes you unique? Not genes so much as surrounding sequences, study finds." ScienceDaily. www.sciencedaily.com/releases/2010/03/100318141536.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins