Featured Research

from universities, journals, and other organizations

Precise model of tectonic-plate movements developed from 20-year study

Date:
March 23, 2010
Source:
Rice University
Summary:
When it comes to 3-D puzzles, Rubik's Cube pales in comparison with the latest creation from a team of geophysicists. They have just put the finishing touches on a 20-year effort to precisely describe the relative movements of the interlocking tectonic plates that make up about 97 percent of Earth's surface.

A new model uses measurements from mid-ocean ridges (yellow and green) to precisely describe the movements of interlocking tectonic plates that make up about 97 percent of Earth's surface.
Credit: D. Sandwell/Scripps Institute of Oceanography and W. H. F. Smith/NOAA

When it comes to three-dimensional puzzles, Rubik's Cube pales in comparison with the latest creation of Rice University geoscientist Richard Gordon. Gordon and collaborators Chuck DeMets of the University of Wisconsin-Madison and Donald Argus of NASA's Jet Propulsion Laboratory in Pasadena, Calif., have just put the finishing touches on a 20-year labor of love, a precise description of the relative movements of the interlocking tectonic plates that account for about 97 percent of Earth's surface.

Related Articles


The 25 tectonic plates that form Earth's surface are rigid, but they are in constant motion because they float atop the planet's interior. The plates constantly grind together and slide past one another. When two plates crash into each other, they form mountain ranges like the Himalayas. When they slide past one another, they cause earthquakes like the one that struck Haiti this year.

"We live on a dynamic planet, and it's important to understand how the surface of the planet changes," said Gordon, Rice's W.M. Keck Foundation Chair in Geophysics. "The frequency and magnitude of earthquakes depend upon how the tectonic plates move. Understanding how plates move can help researchers understand surface processes like mountain-building and subsurface processes like mantle convection."

The new model of Earth, dubbed "MORVEL" for "mid-ocean ridge velocities," was developed by Gordon and longtime collaborators DeMets and Argus. A paper describing MORVEL is available online and due to appear in next month's issue of Geophysical Journal International (GJI). In creating MORVEL, DeMets, Gordon and Argus are essentially one-upping themselves: Their 1990 paper on tectonic plate velocities has been cited more than 2,000 times by other scientists.

"At the time that one came out, Chuck and I were out on an airplane in the Indian Ocean collecting more than 60,000 kilometers of new magnetic profiles south and southwest of the Maldives," Gordon said. "At that point, we'd already decided to do another model, but we didn't want to do one that was just an incremental improvement. To make it worthwhile, it had to be a whole lot better, and that's why it took so long."

Gordon said MORVEL offers a marked improvement on the previous work they did because it's based on more -- and more precise -- data, like the profiles he and DeMets collected in the Indian Ocean in 1990.

"This model can be used to predict the movement of one plate relative to any other plate on the Earth's surface," said DeMets, the lead author of the MORVEL paper. "Plate tectonics describes almost everything about how the Earth's surface moves and deforms, but it's remarkably simple in a mathematical way."

About three-quarters of the MORVEL data come from Earth's mid-ocean ridges, undersea boundaries between tectonic plates. At these ridges, new crust forms constantly as magma wells up from beneath the planet's surface while the plates spread apart.

To judge how fast the plates are spreading, the team uses data from scanners that look at the magnetic profile of the crust that's formed at mid-ocean ridges. When Earth's magnetic field changes polarity, it leaves a magnetic mark in the crust that's akin to a tree ring. These polarity changes occur at irregular intervals -- the last being about 780,000 years ago. By matching up the marks from the polarity shifts at different points along mid-ocean ridges worldwide, the team can judge how quickly new crust is being formed.

MORVEL's a study in contrasting scales. It estimates exactly how fast plates are spreading apart along mid-ocean ridges. These rates are typically a few inches a year at most. And MORVEL does this for plate boundaries along a continuous string of mid-ocean ridges more than 40,000 miles long.

Twenty years ago, DeMets, Argus and Gordon used spreading rates that were based on magnetic reversal timescales developed from potassium-argon dating, but more precise methods have since been developed. Using the newer data, the team was able to improve the resolution of its model, particularly in parts of the world where plates are spreading the fastest.

A second study by Argus, Gordon and other colleagues, which was also years in the making and which appears in this month's issue of GJI, offers additional information that can help refine scientists' estimates of how Earth's surface is evolving. In that study, the group used new data to refine best estimates for the exact position of Earth's center. In examining the movement of tectonic plates based upon data from Global Positioning System satellites, satellite laser ranging and similar methods, scientists must consider how the planet is rotating and where its center of mass lies.

"Don came up with a bunch of criteria to try to find out what the center of Earth is doing, and this paper resulted from that," Gordon said. "The kinds of differences we're talking about are corrections of about 2 millimeters a year on how the center of Earth moves with time. It may not sound like much, but at the level of accuracy that we're operating, that 2 millimeters matters," Gordon said.

MORVEL model.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Donald F. Argus, Richard G. Gordon, Michael B. Heflin, Chopo Ma, Richard J. Eanes, Pascal Willis, W. Richard Peltier, Susan E. Owen. The angular velocities of the plates and the velocity of Earth's centre from space geodesy. Geophysical Journal International, 2010; 180 (3): 913 DOI: 10.1111/j.1365-246X.2009.04463.x

Cite This Page:

Rice University. "Precise model of tectonic-plate movements developed from 20-year study." ScienceDaily. ScienceDaily, 23 March 2010. <www.sciencedaily.com/releases/2010/03/100322182020.htm>.
Rice University. (2010, March 23). Precise model of tectonic-plate movements developed from 20-year study. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/03/100322182020.htm
Rice University. "Precise model of tectonic-plate movements developed from 20-year study." ScienceDaily. www.sciencedaily.com/releases/2010/03/100322182020.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
NY Gov. on Flood Prep: 'prepared for the Worst'

NY Gov. on Flood Prep: 'prepared for the Worst'

AP (Nov. 23, 2014) First came the big storm. Now comes the big melt for residents of flood-prone areas around Buffalo. New York's governor says officials are preparing for the worst as the temperature is expected to rise and potentially melt several feet of snow. (Nov. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins