Featured Research

from universities, journals, and other organizations

Seabed biodiversity in oxygen minimum zones

Date:
April 19, 2010
Source:
National Oceanography Centre, Southampton (UK)
Summary:
Some regions of the deep ocean floor support abundant populations of organisms, despite being overlain by water that contains very little oxygen, according to an international study. But global warming is likely to exacerbate oxygen depletion and thereby reduce biodiversity in these regions, they warn.

Abundant populations of the deep-sea spider crab Encephaloides armstrongi from c. 1,000 m (lower boundary OMZ) in the Gulf of Oman and the dead bodies of large upper-ocean jellyfish (Crambionella orsini) which can occur in plague proportions in the Gulf of Oman.
Credit: NOCS/NERC

Some regions of the deep ocean floor support abundant populations of organisms, despite being overlain by water that contains very little oxygen, according to an international study led by scientists at the United Kingdom's National Oceanography Centre, Southampton. But global warming is likely to exacerbate oxygen depletion and thereby reduce biodiversity in these regions, they warn.

The sunlit surface waters tend to be well oxygenated as a result of their connection with the atmosphere. Here, tiny marine algae called phytoplankton thrive. When they die and sink, they are degraded by bacteria, using oxygen from the water column.

In regions of high plant growth, this can result in the natural development of mid-water oxygen minimum zones (OMZs), especially where oxygen is not replenished by mixing of the water column. Where they touch the continental slope, OMZs create strong seafloor oxygen gradients at depths between 100 and 1000 m.

In addition to low oxygen, sediments within OMZs often contain large amounts of organic matter. As a result, species of animals and protozoans (foraminifera) that can tolerate low oxygen may flourish, despite the stressful conditions. However, if oxygen depletion is very severe, many types of animals disappear. Where animals are present, OMZs provide a variety of habitats created by steep gradients in oxygen and sulphide concentrations, different seafloor types, and variations in acidity and nutrient availability.

In this new synthesis, based on a survey of published and unpublished data, the team of researchers analysed the habitats and biodiversity of well-developed OMZs in the Arabian Sea, eastern Pacific and Bay of Bengal.

"Oxygen seems to be the overriding factor controlling biological diversity and seabed community composition within OMZ core regions," said Professor Andrew Gooday of NOCS: "Where oxygen levels increase, the strong seafloor gradients create variety that exerts an increasingly important influence, with different habitat types supporting different kinds of organisms. In particular, the lower boundaries of OMZs, where oxygen levels begin to rise and food is plentiful, often teem with large organisms, among them brittle stars and spider crabs."

On some continental margins, exposed rocks support encrusting animals, while muddy regions with organic-rich sediments support tube-living organisms and bacterial mats. Movements of the upper boundaries of OMZs, caused by seasonal or longer-term climatic changes, may cause sudden shifts in community composition.

The activities and bodies of some organisms also create opportunities for others. Even the dead play their role.

"The skeletons and carcasses of marine animals provide discrete habitats where other creatures can thrive," said NOCS' Dr Brian Bett: "For example, scavengers such as shrimp-like crustaceans exploit accumulations of dead jellyfish, fish and crabs, while other species live off whale bones."

Although the upper boundaries of OMZs can move up and down in response to climatic changes, the core regions of OMZs are typically very stable, persisting over geological timescales.

"OMZs may be a cradle of biological diversity, promoting speciation by creating strong gradients in the environmental conditions that are important for species as well as barriers to population exchange," explained Gooday, while acknowledging that this needs to be fully investigated using molecular techniques.

Although diversity is strongly depressed locally, particularly in OMZ cores, the researchers conclude that, on balance, OMZs probably enhance regional diversity because they tend to increase environmental variety. In addition, low oxygen concentrations promote adaptations, such as small body size and enlarged body surfaces, which enhance oxygen uptake.

However, global climate change presents a major threat -

"Increased ocean temperature is expected to reduce vertical water mixing and decrease oxygen solubility in seawater," said Bett: "If this results in larger, more intense OMZs, the impact on biodiversity is likely to be negative."

The researchers are Andrew Gooday and Brian Bett (NOCS), Elva Escobar (Universidad Nacional Auto´ noma de Mexico), Baban Ingole (National Institute of Oceanography, India) , Lisa Levin and Carlos Neira (Scripps Institution of Oceanography, La Jolla), Akkur Raman (Andhra University, India), and Javier Sellanes (Universidad Cato´ lica del Norte, Coquimbo, Chile).

The research was the product of a workshop organised by Prof. Lisa Levin (Scripps Institution of Oceanography) within the framework of COMARGE, a project of the Census of Marine Life. NOCS researchers were also supported by the HERMIONE project funded by the European Commission's Seventh Framework Programme under the priority 'Deep-Sea Ecosystems', and the Natural Environment Research Council, UK, project Oceans 2025.


Story Source:

The above story is based on materials provided by National Oceanography Centre, Southampton (UK). Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrew J. Gooday, Brian J. Bett, Elva Escobar, Baban Ingole, Lisa A. Levin, Carlos Neira, Akkur V. Raman, Javier Sellanes. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Marine Ecology, 2010; 31 (1): 125 DOI: 10.1111/j.1439-0485.2009.00348.x

Cite This Page:

National Oceanography Centre, Southampton (UK). "Seabed biodiversity in oxygen minimum zones." ScienceDaily. ScienceDaily, 19 April 2010. <www.sciencedaily.com/releases/2010/03/100324113541.htm>.
National Oceanography Centre, Southampton (UK). (2010, April 19). Seabed biodiversity in oxygen minimum zones. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/03/100324113541.htm
National Oceanography Centre, Southampton (UK). "Seabed biodiversity in oxygen minimum zones." ScienceDaily. www.sciencedaily.com/releases/2010/03/100324113541.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) — Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins