Featured Research

from universities, journals, and other organizations

Microorganisms in toxic groundwater fine-tuned to survive

Date:
March 30, 2010
Source:
DOE/Oak Ridge National Laboratory
Summary:
Microorganisms can indeed live in extreme environments, but the ones that do are highly adapted to survive and little else, according to researchers.

Researchers want to know more about the genetic makeup of "stressed" microbes that live in contaminated groundwater.
Credit: Image courtesy of DOE/Oak Ridge National Laboratory

Microorganisms can indeed live in extreme environments, but the ones that do are highly adapted to survive and little else, according to a collaboration that includes Department of Energy's Oak Ridge National Laboratory and Joint Genome Institute (JGI) and the University of Oklahoma.

The metagenomic study of a "stressed" microbial community in groundwater near a former waste disposal pond site on DOE's Oak Ridge Reservation (ORR) revealed microbes with an overabundance of genes involved in DNA recombination and repair and other defense mechanisms for dealing with contaminants and other environmental stresses.

The studies, said ORNL researcher David Watson, are ultimately aimed at developing biologically based methods for reducing the level of the contaminants in the groundwater, which at the ORR site includes nitrates, solvents and heavy metals, including uranium.

"We are looking to better understand the evolution of microbes in the groundwater plume," Watson said. "The microbes that can break down nitrate into nitrogen can have a long-term benefit toward attenuating the plume."

Watson added that researchers particularly want to better understand the genetic makeup of microbes that can metabolize oxidized forms of uranium into a form that is only slightly soluble and thus easier to precipitate and remove from the groundwater environment.

ORNL's Watson was joined in the study by the University of Oklahoma's Jizhong Zhou and Christopher Hemme; Joint Genome Institute Director Eddy Rubin; and a team that included researchers from ORNL's Environmental Sciences Division, the University of Oklahoma's Institute for Environmental Genomics, Montana State University, Michigan State University and Lawrence Berkeley National Laboratory.

They found that the naturally occurring populations of microbes in the polluted groundwater--which consisted of only a few cell types-- had "very simple" genetic structures tuned primarily to overcoming the stresses presented by the toxic soup, which has a highly acidic pH level of 3.5.

The accumulation of genes involved in resistance and responses to stress appears to be a basic survival strategy that has left the microbes with a marked loss in metabolic diversity.

The waste ponds, which are now part of the Oak Ridge Environmental Remediation Sciences Program Integrated Field Research Center, have been out of use for decades and were capped in 1983.

The research, recently published in the on-line ISME (International Society for Microbial Ecology) Journal, is sponsored by DOE's Office of Science.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Oak Ridge National Laboratory. "Microorganisms in toxic groundwater fine-tuned to survive." ScienceDaily. ScienceDaily, 30 March 2010. <www.sciencedaily.com/releases/2010/03/100329203539.htm>.
DOE/Oak Ridge National Laboratory. (2010, March 30). Microorganisms in toxic groundwater fine-tuned to survive. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/03/100329203539.htm
DOE/Oak Ridge National Laboratory. "Microorganisms in toxic groundwater fine-tuned to survive." ScienceDaily. www.sciencedaily.com/releases/2010/03/100329203539.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins