Featured Research

from universities, journals, and other organizations

'Third gender' identified in close relative of olive tree

Date:
April 1, 2010
Source:
CNRS
Summary:
A hitherto unknown reproductive system in a species closely related to the olive tree, Phillyrea angustifolia L., has been discovered. This new reproductive mode explains the mystery of the high frequencies (up to 50%) of male individuals co-occurring with hermaphrodite individuals in this species.

A hitherto unknown reproductive system in a species closely related to the olive tree, Phillyrea angustifolia L., has been discovered by researchers in France.

Related Articles


This system explains the high concentration of male individuals co-occurring with hermaphrodites in this species. The hermaphrodites, whose blossoms bear both male and female organs, are divided into two morphologically indistinguishable groups. The plants of each group are sterile among themselves but fully compatible with those of the other group. Under these conditions, the hermaphrodites can fertilize only half of the pollen recipients, whereas the males can pollinate all the hermaphrodites. The disadvantage weighing upon the males is thus neatly counterbalanced. This discovery proves for the first time the possibility of an evolutionary transition from hermaphroditism to dioecy.

A report has been published in Science.

Researchers at the Laboratoire de Génétique et Évolution des Populations Végétales (CNRS/Université de Lille 1) and the Centre d'Écologie Fonctionnelle et Évolutive (CNRS/Université de Montpellier 1, 2 and 3/ENSA Montpellier/CIRAD/Ecole Pratique des Hautes Études) have discovered in Phillyrea angustifolia L., a species closely related to the olive tree, a hitherto unknown reproductive system characterized by incompatibility between hermaphrodite plants.

This new reproductive mode explains the mystery of the high frequencies (up to 50%) of male individuals co-occurring with hermaphrodite individuals in this species. The hermaphrodite individuals, whose blossoms bear both male and female organs, are divided into two morphologically indistinguishable groups. The plants of each group are self-incompatible (they cannot fertilize each other) but fully compatible with plants of the other group. In such a system, a given hermaphrodite plant can pollinate only half of the other hermaphrodites, while a male can pollinate all the hermaphrodites in the population. These conditions neatly offset the reproductive disadvantage affecting the males, which have no female function (and are also referred to as "female-sterile" for this reason) and can thus transmit their genes only by male gametes, and not by both male and female gametes like the hermaphrodites.

In addition, this self-incompatibility within two morphologically identical groups of hermaphrodites could be a key reproductive mode, the origin of plant species with separate genders that evolve through "intermediary" reproductive systems. In the overall context of the evolution of reproductive systems from hermaphroditism toward dioecy (system in which individuals are exclusively either male or female), mixed systems involving the presence in the same species of both females and hermaphrodites (gynodioecy) or both males and hermaphrodites (androdioecy) are considered intermediaries derived from hermaphroditism. However, all previous empirical examples have shown that androdioecy had evolved from dioecious systems through the females' acquisition of a male function, and not from hermaphroditic systems through the loss of the female function by certain hermaphrodites. This new study shows for the first time that a transition from hermaphroditism to androdioecy (presence of hermaphrodite and male individuals within the populations of a single species) is possible.

This discovery of a self-incompatibility system involving only two morphologically indistinguishable groups of hermaphrodite plants comes as a totally unexpected development. One of the researchers' next challenges will be to explain, from a functional point of view, how the number of self-incompatibility groups has been maintained at two.


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Saumitou-Laprade, P. Vernet, C. Vassiliadis, Y. Hoareau, G. Magny (de), B. Dommee, J. Lepart. A Self-Incompatibility System Explains High Male Frequencies in an Androdioecious Plant. Science, 26 March 2010 DOI: 10.1126/science.1186687

Cite This Page:

CNRS. "'Third gender' identified in close relative of olive tree." ScienceDaily. ScienceDaily, 1 April 2010. <www.sciencedaily.com/releases/2010/03/100331141614.htm>.
CNRS. (2010, April 1). 'Third gender' identified in close relative of olive tree. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/03/100331141614.htm
CNRS. "'Third gender' identified in close relative of olive tree." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331141614.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) — Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins