Featured Research

from universities, journals, and other organizations

Sensitive nerve cells: Research sheds light on what triggers Parkinson's disease

Date:
April 22, 2010
Source:
Public Library of Science
Summary:
In Germany alone, more than 300,000 people are afflicted by Parkinson's disease and the number is growing steadily. However, despite comprehensive research, scientists are still somewhat in the dark as to the molecular changes that trigger this illness. Scientists have demonstrated using a new animal model that nerve cells do not begin to die to the extent found in "Parkinson's" in mice until three conditions come together.

In Parkinson's disease, nerve cells die in a structure of the midbrain, the substantia nigra. Compared to a healthy mouse brain (left), the diseased mouse brain (right) shows considerable loss of nerve cells. Max Planck Scientists and their colleagues have now been able to show that such pronounced cell death is triggered only when three conditions are met.
Credit: Max Planck Institute of Neurobiology / L. Aron

In Germany alone, more than 300,000 people are afflicted by Parkinson's disease and the number is growing steadily. However, despite comprehensive research, scientists are still somewhat in the dark as to the molecular changes that trigger this illness. Scientists at the Max Planck Institute of Neurobiology in Martinsried, Germany, together with colleagues from Munich and Hamburg, have demonstrated using a new animal model that nerve cells do not begin to die to the extent found in "Parkinson's" in mice until three conditions come together.

Related Articles


These findings, which are published in the online, open access journal PLoS Biology, are an important step forward in understanding this illness.

In the last ten years, various genes that play a role in the outbreak of the hereditary form of Parkinson's disease have been identified. In addition, nerve cell growth factors, such as GDNF, have been found to reduce the rate at which nerve cells are destroyed in the brain areas afflicted in Parkinson's disease, most notably the substantia nigra of the midbrain. However, the treatment with GDNF and other similar growth factors have not yet left the clinical trial phase. As the brain cells dying in Parkinson's disease are embedded in sensitive brain tissue, their detailed investigation is impossible in humans. The development of animal models in which defined genetic and/or pharmacological manipulations can be made is therefore essential for a good understanding of the molecular and cellular causes of the disease.

However, a major drawback of Parkinson's research is that so far most animal models fail to display the accelerated loss of nerve cells typical of the human illness, thus preventing a thorough analysis of Parkinson's disease mechanisms. As the world's population ages, there is an upward trend of the number of people afflicted and the need for effective forms of treatment becomes more urgent. Current treatments aim to ameliorate symptoms, since the underlying disease mechanisms remain unknown.

Rόdiger Klein and colleagues have now been able to show that a significant cell death in the substantia nigra occurs only when three conditions join forces. In a mouse model, three prerequisites had to be fulfilled: a defective disease gene (in this case the DJ-1 gene); a deficiency in responding to a growth factor; and the aging of the animal. In other words, nerve cells which lack the DJ-1 gene and which, in addition, cannot react to the pro-survival signals initiated by the growth factor are particularly prone to die as the mouse ages. "Although we had an inkling that this might be the case, we had no actual proof up to now," Liviu Aron, the first author of this study, explains.

"The discovered connection between the response to a growth factor and the DJ-1 gene is extremely interesting," adds Klein. "Environmental factors influence the supply of growth factors and their interactions with genetic factors may help us to better understand Parkinson's disease." The detailed analysis of the complex mechanisms that set in during the process of aging is likely to keep scientists busy for some time.

Complementary genetic investigations in the fruit fly Drosophila also revealed a connection between growth factor responses and the DJ-1 gene. The researchers thus assume that this interaction arose early in evolutionary history and has since then been preserved. This newly discovered connection may open up a new form of therapy for patients with certain genetic defects that give them a higher predisposition for the disease: for example, a specific medication with GDNF might be more effective in curbing the development of the illness in these than in other patients.

Funding: This work was in part supported by the European Union (NeuroNE, MOLPARK, and Nervous System Repair Research Training Network to RK), the Deutsche Forschungsgemeinschaft (SFB596 to RK), the Federal Ministry of Education and Research (National Genome Research Network, 01GS08174 to WW), and the Helmholtz Alliance ''Mental Health in an Ageing Society'' (to WW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aron L, Klein P, Pham T-T, Kramer ER, Wurst W, et al. () . PLoS Biol. Pro-Survival Role for Parkinson's Associated Gene DJ-1 Revealed in Trophically Impaired Dopaminergic Neurons. PLoS Biology, 2010; 8 (4): e1000349 DOI: 10.1371/journal.pbio.1000349

Cite This Page:

Public Library of Science. "Sensitive nerve cells: Research sheds light on what triggers Parkinson's disease." ScienceDaily. ScienceDaily, 22 April 2010. <www.sciencedaily.com/releases/2010/04/100406172644.htm>.
Public Library of Science. (2010, April 22). Sensitive nerve cells: Research sheds light on what triggers Parkinson's disease. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/04/100406172644.htm
Public Library of Science. "Sensitive nerve cells: Research sheds light on what triggers Parkinson's disease." ScienceDaily. www.sciencedaily.com/releases/2010/04/100406172644.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins