Featured Research

from universities, journals, and other organizations

Significant findings about protein architecture may aid in drug design, generation of nanomaterials

Date:
April 9, 2010
Source:
American Society for Biochemistry and Molecular Biology
Summary:
Researchers have gleaned key insights into the architecture of a protein that controls iron levels in almost all organisms. Their study culminated in one of the first successful attempts to take apart a complex biological nanostructure and isolate the rules that govern its natural formation.

Researchers in Singapore are reporting this week that they have gleaned key insights into the architecture of a protein that controls iron levels in almost all organisms. Their study culminated in one of the first successful attempts to take apart a complex biological nanostructure and isolate the rules that govern its natural formation.

The Nanyang Technological University team's work on the protein ferritin, the results of which appear in this week's issue of the Journal of Biological Chemistry, is expected to have significant ramifications on the fields of drug design and nanomaterials.

"Engineering the structure of a protein is one of the ultimate dreams of structural biologists," wrote one of the journal's peer reviewers, "and approaching that dream is greatly enabled through studies aimed at finding out what governs the nanoarchitecture of the protein."

Brendan P. Orner, the assistant professor who oversaw the team's work, described the protein ferritin as a potential model for explaining complicated protein structure in general.

Across the biological kingdoms, ferritin regulates the distribution of iron, which is necessary for a number of cellular functions but also forms reactive ions that can be lethal to cells. Shaped like a spherical nanocage, ferritin is made up of 24 proteins, and it sequesters the reactive iron ions in its hollow interior. In humans, ferritin prevents iron deficiency and overload.

"The rules that govern self-assembling nanosystems, like the ferritin model, are poorly understood," Orner explained. "We systematically analyzed the interactions between the 24 ferritin units that make up the nanocage and identified the hot spots that are crucial to the cage's formation."

Their goal was to discover which amino acids are responsible for assembling the cage, and they found that it is possible to both disassemble ferritin by removing single side chains of amino acids and, surprisingly, to stabilize the structure by removing other side chains.

Understanding the assembly of the nanocage could open the door to drug design that will disrupt the structure and function of defective proteins that cause or contribute to disease. It also may aid in the creation of biological nanostructures in which scientists can grow special particles and materials with a variety of properties and applications.

"Cell biology provides many structures that are on the nanoscale and have amazing complexity and symmetry," Orner said. "The problem is that many of these structures are, like ferritin, self-assembled proteins, and, if we are going to use them for nanomaterials applications, we need to understand the fundamentals that make them form this way naturally."

Orner and his team members are particularly interested in growing nanoparticles of precise dimensions inside ferritin shells. Already, they have developed a new method to grow gold nanoparticles in them.

"Slight deviations in size or shape can radically change nanoparticles' properties, particularly in the case of metals and semiconductors," Orner said. "Our ferritin proteins are hollow, so, when we grow mineral or metal clusters inside them, the growth stops when the nanoparticles reach the limits of the protein shell."

By studying the rules that control the folding and assembly of such a protein in nature, Orner said, the investigators hope to be able to manipulate them one day to create new proteins with novel sizes and shapes and, therefore, generate nanoparticles of novel sizes and shapes inside them.

"Those nanoparticles could be used for in-vitro assays to do high-throughput drug screening of some protein-protein interactions involved in virus infection and cancer, for example," he said.

Orner's team included doctoral students Yu Zhang and Rongli Fan, undergraduate students Siti Raudah, Huihian Teo and Gwenda Teo, and scholar Xioming Sun. Their research was funded by the Singapore Ministry of Education and Nanyang Technological University.

Their resulting article has been named a "Paper of the Week" by the Journal of Biological Chemistry, putting it in the top 1 percent of papers reviewed by the editorial board in terms of significance and overall importance.


Story Source:

The above story is based on materials provided by American Society for Biochemistry and Molecular Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhang et al. Alanine-shaving Mutagenesis to Determine Key Interfacial Residues Governing the Assembly of a Nano-cage Maxi-ferritin. Journal of Biological Chemistry, 2010; 285 (16): 12078 DOI: 10.1074/jbc.M109.092445

Cite This Page:

American Society for Biochemistry and Molecular Biology. "Significant findings about protein architecture may aid in drug design, generation of nanomaterials." ScienceDaily. ScienceDaily, 9 April 2010. <www.sciencedaily.com/releases/2010/04/100409105403.htm>.
American Society for Biochemistry and Molecular Biology. (2010, April 9). Significant findings about protein architecture may aid in drug design, generation of nanomaterials. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2010/04/100409105403.htm
American Society for Biochemistry and Molecular Biology. "Significant findings about protein architecture may aid in drug design, generation of nanomaterials." ScienceDaily. www.sciencedaily.com/releases/2010/04/100409105403.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) — A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins