Featured Research

from universities, journals, and other organizations

Protein partners may provide insight into inherited mental retardation

Date:
April 27, 2010
Source:
Cell Press
Summary:
A new study that uncovers a pathway critical for proper embryological development in zebra fish may also reveal a parallel mechanism that drives wiring of the vertebrate brain. The research provides intriguing insight into the complex signaling mechanisms of fragile-X proteins.

A new study that uncovers a pathway critical for proper embryological development in zebra fish may also reveal a parallel mechanism that drives wiring of the vertebrate brain. The research, published by Cell Press in the April 23 issue of the journal Molecular Cell provides intriguing insight into the complex signaling mechanisms of fragile-X proteins.

Fragile-X syndrome (FXS), the most common cause of inherited mental retardation, arises from mutations in the fragile X mental retardation (FMR) gene. This FMR1 protein, and the closely related FXR1 protein, both have multiple regions that bind mRNAs (molecules that are critical for the synthesis of new proteins). One such region is a conserved KH2 domain that has long been suspected to also bind proteins and, when mutated, inactivates the entire FMR1 protein.

"We know that in the brain, fragile-X proteins recruit and control mRNA translation at sites where local protein synthesis is needed to organize synapses," explains senior study author, Dr. Ed Manser from the Agency for Science, Technology and Research in Singapore. "But how the fragile-X protein complex is put together, and whether partners for the KH2 domain exist have never been clearly established."

Manser and his colleagues looked for proteins that might bind to the brain-enriched p21-activated kinase (PAK). PAK, which was first discovered by Dr. Manser's research group in Singapore, also plays a key role in the development of synapses in the brain. "We found that FXR1 protein, which is present in all cells, binds PAK1 only when the kinase is in an "open" active conformation. PAK1 binds to the brain FMR1 protein via the KH2 domain in the same way," explains Dr. Manser. "Our most exciting finding was that the KH2 mutant could not bind PAK at all."

The researchers went on to show that PAK phosphorylated FXR1 elsewhere (at a specific site called Ser420) and that this modification was needed to properly make muscle in their test organism, the zebra fish. The authors suggest that the same kind of protein-mRNA complexes that operate in newly formed muscles may also be required for the development of synapses.

"We provided compelling evidence for an interaction between PAK1 and FXR1 via a well-defined protein-protein interface, and showed that phosphorylation of FXR1was critical to get the protein working," concludes Dr. Manser. "In the future we plan to further investigate the interplay between PAK1 and associated proteins in synapses. In fact, we have recently discovered and purified from brain a completely new protein which looks like it may provide another important piece to the fragile X puzzle."

The researchers include Evonne Say, sGSK Group at IMCB, Neuroscience Research Partnership, Singapore; Hwee-Goon Tay, Astar Institute of Medical Biology (IMB), Singapore; Zhuo-shen Zhao, sGSK Group at IMCB, Neuroscience Research Partnership, Singapore; Yohendran Baskaran, sGSK Group at IMCB, Neuroscience Research Partnership, Singapore; Rong Li, Experimental Therapeutics Centre (ETC), Singapore; Louis Lim, UCL Institute of Neurology, London, UK; and Ed Manser, sGSK Group at IMCB, Neuroscience Research Partnership, Singapore, Astar Institute of Medical Biology (IMB), Singapore.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Evonne Say, Hwee-Goon Tay, Zhuo-shen Zhao, Yohendran Baskaran, Rong Li, Louis Lim, Ed Manser. A Functional Requirement for PAK1 Binding to the KH(2) Domain of the Fragile X Protein-Related FXR1. Molecular Cell, 2010; 38 (2): 236 DOI: 10.1016/j.molcel.2010.04.004

Cite This Page:

Cell Press. "Protein partners may provide insight into inherited mental retardation." ScienceDaily. ScienceDaily, 27 April 2010. <www.sciencedaily.com/releases/2010/04/100422153800.htm>.
Cell Press. (2010, April 27). Protein partners may provide insight into inherited mental retardation. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2010/04/100422153800.htm
Cell Press. "Protein partners may provide insight into inherited mental retardation." ScienceDaily. www.sciencedaily.com/releases/2010/04/100422153800.htm (accessed September 18, 2014).

Share This



More Health & Medicine News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Artificial Sweetener Could Promote Diabetes

Artificial Sweetener Could Promote Diabetes

Newsy (Sep. 17, 2014) Doctors once thought artificial sweeteners lacked the health risks of sugar, but a new study says they can impact blood sugar levels the same way. Video provided by Newsy
Powered by NewsLook.com
Ebola Vaccine Trial Gets Underway at Oxford University

Ebola Vaccine Trial Gets Underway at Oxford University

AFP (Sep. 17, 2014) A healthy British volunteer is to become the first person to receive a new vaccine for the Ebola virus after US President Barack Obama called for action against the epidemic and warned it was "spiralling out of control." Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Obesity Rates Steady Even As Americans' Waistlines Expand

Obesity Rates Steady Even As Americans' Waistlines Expand

Newsy (Sep. 17, 2014) Researchers are puzzled as to why obesity rates remain relatively stable as average waistlines continue to expand. Video provided by Newsy
Powered by NewsLook.com
President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins