Featured Research

from universities, journals, and other organizations

Microfluidic integrated circuit could help enable home diagnostic tests

Date:
April 25, 2010
Source:
University of Michigan
Summary:
As a way to simplify lab-on-a-chip devices that could offer quicker, cheaper and more portable medical tests, researchers have created microfluidic integrated circuits.

Still image from a video showing one circuit is serving as the clocking signal of another circuit so that the branching fluids switch in unison.
Credit: Image courtesy of University of Michigan

As a way to simplify lab-on-a-chip devices that could offer quicker, cheaper and more portable medical tests, University of Michigan researchers have created microfluidic integrated circuits.

Just as electronic circuits intelligently route the flow of electricity on computer chips without external controls, these microfluidic circuits regulate the flow of fluid through their devices without instructions from outside systems.

A paper on the technology is newly published online in Nature Physics.

A microfluidic device, or lab-on-a-chip, integrates multiple laboratory functions onto one chip just centimeters in size. The devices allow researchers to experiment on tiny sample sizes, and also to simultaneously perform multiple experiments on the same material. They can be engineered to mimic the human body more closely than the Petri dish does. They could lead to instant home tests for illnesses, food contaminants and toxic gases, among other advances.

"In most microfluidic devices today, there are essentially little fingers or pressure forces that open and close each individual valve to route fluid through the device during experiments. That is, there is an extra layer of control machinery that is required to manipulate the current in the fluidic circuit," said Shu Takayama, the principal investigator on the project. Takayama is an associate professor in the U-M Department of Biomedical Engineering.

That's similar to how electronic circuits were manipulated a century ago. Then, with the development of the integrated circuit, the "thinking" became embedded in the chip itself -- a technological breakthrough that enabled personal computers, Takayama said.

"We have literally made a microfluidic integrated circuit," said Bobak Mosadegh, a doctoral student in Takayama's lab who is first author of the paper.

The external controls that power today's microfluidic devices can be cumbersome. Each valve on a chip (and there could be dozens of them) requires its own electromechanical push from an off-chip actuator or pump. This has made it difficult to shrink microfluidic systems to palm- or fingertip-sized diagnostic devices.

The Takayama lab's innovation is a step in this direction. His research group has devised a strategy to produce the fluidic counterparts of key electrical components including transistors, diodes, resistors and capacitors, and to efficiently network these components to automatically regulate fluid flow within the device.

These components are made using conventional techniques, so they are compatible with all other microfluidic components such as mixers, filters and cell culture chambers, the researchers say.

"We've made a versatile control system," Mosadegh said. "We envision that this technology will become a platform for researchers and companies in the microfluidics field to develop sophisticated self-controlled microfluidic devices that automatically process biofluids such as blood and pharmaceuticals for diagnostics or other applications.

"Just as the integrated circuit brought the digital information processing power of computers to the people, we envision our microfluidic analog will be able to do the same for cellular and biochemical information."

The paper is titled "Integrated Elastomeric Components for Autonomous Regulation of Sequential and Oscillatory Flow Switching in Microfluidic Devices." This research is funded by the National Institutes of Health, the U.S. Department of Education and the National Institute for Dental and Craniofacial Research. Also contributing were researchers from the U-M departments of Biomedical Engineering and Mechanical Engineering as well as the Macromolecular Science and Engineering Center.

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bobak Mosadegh, Chuan-Hsien Kuo, Yi-Chung Tung, Yu-suke Torisawa, Tommaso Bersano-Begey, Hossein Tavana, Shuichi Takayama. Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nature Physics, 2010; DOI: 10.1038/nphys1637

Cite This Page:

University of Michigan. "Microfluidic integrated circuit could help enable home diagnostic tests." ScienceDaily. ScienceDaily, 25 April 2010. <www.sciencedaily.com/releases/2010/04/100422170149.htm>.
University of Michigan. (2010, April 25). Microfluidic integrated circuit could help enable home diagnostic tests. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2010/04/100422170149.htm
University of Michigan. "Microfluidic integrated circuit could help enable home diagnostic tests." ScienceDaily. www.sciencedaily.com/releases/2010/04/100422170149.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins