Featured Research

from universities, journals, and other organizations

Lengthening time a drug remains bound to a target may lead to improving diagnostics, therapy

Date:
May 27, 2010
Source:
Federation of American Societies for Experimental Biology
Summary:
Studies indicate that modifications that enhance the time a drug remains bound to its target, or residence time, may lead to better diagnostic and therapeutic agents.

Studies led by Stony Brook University professor of chemistry Peter J. Tonge indicate that modifications that enhance the time a drug remains bound to its target, or residence time, may lead to better diagnostic and therapeutic agents.

Related Articles


Tonge presented these results at the American Society for Biochemistry and Molecular Biology's annual meeting in a talk titled "Slow Onset Inhibitors of Bacterial Fatty Acid Biosynthesis: Residence Time, In Vivo Activity and In Vivo Imaging." The talk was held in Anaheim Convention Center in Anaheim, CA on April 25.

"Our research team believes that many drugs are effective because they have long residence times on their target," says Tonge, Director of Infectious Disease Research at the Institute for Chemical Biology & Drug Discovery. "This concept has largely been ignored by investigators, and residence time is not usually incorporated into the drug discovery process."

Tonge explains that most drug discovery efforts obtain only data on the thermodynamic affinity of the drug for its target, measurements that are made at constant drug concentration. However, the Stony Brook University-led research factors in residence time, which he emphasizes is critical for activity in vivo where drug concentrations fluctuate with time.

"The central component of our work is that the length of time a drug remains bound to a target is very important for the activity of the compound in vivo," he adds.

Tonge, together with collaborators at Colorado State University and the University of Wόrzburg in Germany, have developed a series of compounds that inhibit an enzyme target from Francisella tularensis, where the in vivo antibacterial activity of the compounds correlates with their residence time on the target and not with their thermodynamic affinity for the target. This resulted in a direct correlation between residence time and in vivo activity against an infectious agent.

The research team has also developed a long residence time inhibitor of an enzyme drug target in Mycobacterium tuberculosis and demonstrated that this compound has antibacterial activity in an animal model of tuberculosis.

Because compounds with long residence times should accumulate in bacteria, Tonge explains that the research may lead to the development of agents to image bacterial populations in vivo using positron emission tomography. He says that researchers could then further the concept and develop a method for non-invasive imaging of bacterial populations in humans for both diagnostic purposes and also to monitor bacterial load during drug therapy, thereby helping to chart a drug's effectiveness against bacterial infection.


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Cite This Page:

Federation of American Societies for Experimental Biology. "Lengthening time a drug remains bound to a target may lead to improving diagnostics, therapy." ScienceDaily. ScienceDaily, 27 May 2010. <www.sciencedaily.com/releases/2010/04/100425151141.htm>.
Federation of American Societies for Experimental Biology. (2010, May 27). Lengthening time a drug remains bound to a target may lead to improving diagnostics, therapy. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2010/04/100425151141.htm
Federation of American Societies for Experimental Biology. "Lengthening time a drug remains bound to a target may lead to improving diagnostics, therapy." ScienceDaily. www.sciencedaily.com/releases/2010/04/100425151141.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins